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1. Introduction

Throughout the history of string and M-theory an important part in many developments

in the subject has been played by supersymmetric solutions of supergravity, i.e. by back-

grounds which admit a number of Killing spinors ǫ which are parallel with respect to the

supercovariant derivative:1 Dµǫ = 0. Due to their ubiquitous role it has long been realised

that it would be advantageous to have classifications of all supersymmetric solutions of a

given theory.

For purely gravitational backgrounds the supersymmetric possibilities follow from the

Berger classification of the possible Riemannian holonomies [1] (see [2, 3] for an extension

to the Lorentzian case). However, in the presence of additional force fields (carried by

e. g. scalars, gauge potentials or a cosmological constant) it has proven very difficult to

obtain knowledge of all supersymmetric possibilities.

The reason for the complication in the presence of additional fields lies in the holonomy

of the supercurvature Rµν = D[µDν]. For purely gravitational backgrounds the holonomy

of the supercurvature is generically given by H = Spin(d−1, 1) in d dimensions, and hence

coincides with the Lorentz group. In such cases the Lorentz gauge freedom allows one to

choose constant Killing spinors. Another simplification is that if there is one Killing spinor

with a specific stability subgroup, i.e. it is invariant under some Lorentz subgroup, all other

spinors with the same stability subgroup are Killing as well.

For more general solutions including fields other than gravity, the holonomy is generi-

cally extended to a larger group H ⊃ Spin(d− 1, 1). For example, in the present paper we

consider gauged minimal four-dimensional N = 2 supergravity, which has H = GL(4,C) [4].

In such cases one cannot choose constant Killing spinors nor are all spinors with the same

stability subgroup automatically Killing. For these reasons the classification of the back-

grounds that allow for Killing spinors is more convoluted, or richer, in such cases. For a

long time the only classification available was in ungauged minimal four-dimensional N = 2

supergravity [5, 6], which has H = SL(2,H).

A new impulse was given to the subject with the introduction of G-structures and

the method of spinor bilinears to solve the Killing spinor equations [7]. In this approach,

space-time forms are constructed as bilinears from a Killing spinor and one analyses the

constraints that these forms imply for the background. Using this framework, a number of

complete classifications [8 – 10] and many partial results (see e.g. [11 – 21] for an incomplete

list) have been obtained. By complete we mean that the most general solutions for all

possible fractions of supersymmetry have been obtained, while for partial classifications

this is only available for some fractions. Note that the complete classifications mentioned

1For the purpose of this discussion we will ignore possible additional Killing spinor equations coming

from the variation of dilatinos and gauginos.
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above involve theories with eight supercharges and H = SL(2,H), and allow for either half-

or maximally supersymmetric solutions.

An approach which exploits the linearity of the Killing spinors has been proposed [22]

under the name of spinorial geometry. Its basic ingredients are an explicit oscillator basis

for the spinors in terms of forms and the use of the gauge symmetry to transform them

to a preferred representative of their orbit. In this way one can construct a linear system

for the background fields from any (set of) Killing spinor(s) [23]. This method has proven

fruitful in e.g. the challenging case of IIB supergravity [24 – 26]. In addition, it has been

adjusted to impose ’near-maximal’ supersymmetry and thus has been used to rule out

certain large fractions of supersymmetry [27 – 30]. Finally, a complete classification for

type I supergravity in ten dimensions has been obtained [32].

In the present paper we would like to address the classification of supersymmetric

solutions in four-dimensional minimal N = 2 supergravity. As will also be reviewed in

section 2, the ungauged case has been classified completely [5, 6]. For the gauged case, the

discussion of 1/4 supersymmetry splits up in a time-like and a light-like class (depending on

the causal nature of the Killing vector associated to the Killing spinor). The time-like class

is completely specified by a single complex function depending on three spatial coordinates

b = b(z,w, w̄), subject to a second-order differential equation which can not be solved in

general [13]. The light-like class can be given in all generality, and in addition its restriction

to 1/2-BPS solutions has been derived [16]. Furthermore, there are no backgrounds with

3/4 supersymmetry [29] and AdS4 is the unique possibility with maximal supersymmetry.

Therefore the remaining open question concerns half-supersymmetric backgrounds in the

gauged theory.2

In the following, we will first re-analyse the 1/4-supersymmetric backgrounds using the

method of spinorial geometry, and in fact find an additional possibility in the light-like case:

a half supersymmetric bubble of nothing in AdS4 and its Petrov type II generalization, a

new 1/4 BPS configuration that has the interpretation of gravitational waves propagating

on the bubble of nothing. This completes the analysis of the null class in all its generality.

Then we will derive the constraints for half-supersymmetric backgrounds for the timelike

class. Subject to a single assumption on the time-dependence of the second Killing spinor

these will be solved in general, up to a second order ordinary differential equation. The

assumption will be justified by solving the full set of conditions in a number of examples

which illustrate the possible spatial dependence of b. All these cases turn out to have

time-dependence of the assumed form. The different examples are:

• the b = b(z) family of solutions, comprising part of the Reissner-Nordström-Taub-

NUT-AdS4 backgrounds,

• waves on the previous backgrounds with b = b(z,w),

• solutions with b imaginary and their PSL(2,R) transformed counterparts,

2The addition of external matter was considered in [31].
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• solutions of the dimensionally reduced gravitational Chern-Simons model that can

be embedded in the equations for a timelike Killing spinor [16].

We determine when these backgrounds preserve 1/2 supersymmetry and provide the ex-

plicit Killing spinors. Moreover, in the subcases consisting of AdS4 and AdS2 × H
2, the

action of the isometries of these backgrounds on the Killing spinors is given explicitly.

The outline of this paper is as follows. In section 2, we discuss the orbits of Killing

spinors and review the known classification results in the theory at hand. In section 3, we go

through the complete classification of the null class. In section 4, we discuss the constraints

for 1/4 and 1/2 supersymmetry in the timelike class. We derive the time-dependence of

the second Killing spinor and solve the equations for the case of linear time-dependence

(G0 = 0). A number of examples of the 1/2 BPS timelike class are provided in section 5.

Finally, in section 6 we present our conclusions and outlook. In appendix A we review our

notation and conventions for spinors, while in appendix B the associated bilinear forms are

given. Appendix C deals with the special case P ′ = 0, to be defined in section 4.4. Finally,

in appendix D, we will give the details of the G0 = 0 case.

2. G-invariant Killing spinors in 4D

2.1 Orbits of Dirac spinors under the gauge group

In order to obtain the possible orbits of Spin(3,1) in the space of Dirac spinors ∆c, we first

consider the most general positive chirality spinor3 a1 + be12 (a, b ∈ C) and determine its

stability subgroup. This is done by solving the infinitesimal equation

αcdΓcd(a1 + be12) = 0 . (2.1)

First of all, notice that a1 + be12 is in the same orbit as 1, which can be seen from

eγΓ13eψΓ12eδΓ13ehΓ02 1 = ei(δ+γ)eh cos ψ 1 + ei(δ−γ)eh sin ψ e12 .

This means that we can set a = 1, b = 0 in (2.1), which implies then α02 = α13 = 0,

α01 = −α12, α03 = α23. The stability subgroup of 1 is thus generated by

X = Γ01 − Γ12 , Y = Γ03 + Γ23 . (2.2)

One easily verifies that X2 = Y 2 = XY = 0, and thus exp(µX + νY ) = 1 + µX + νY , so

that X,Y generate R
2.

Spinors of negative chirality are composed of odd forms, i.e. ae1 + be2. One can show

in a similar way that they are in the same orbit as e1, and the stability subgroup is again

R
2, with the above generators X,Y .

For definiteness and without loss of generality we will always assume that the first

Killing spinor has a non-vanishing positive chirality component, and use (part of) the

3Our conventions for spinors and their description in terms of forms can be found in appendix A.
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Lorentz symmetry to bring this to the form 1. Hence we can write a general spinor as

1+ae1 + be2. Now act with the stability subgroup of 1 to bring ae1 + be2 to a special form:

(1 + µX + νY )(1 + ae1 + be2) = 1 + be2 + [a + 2b(ν − iµ)]e1 .

In the case b = 0 this spinor is invariant, so the representative is 1 + ae1, with isotropy

group R
2. If b 6= 0, one can bring the spinor to the form 1 + be2, with isotropy group I.

The representatives4 together with the stability subgroups are summarized in table 1.

In the ungauged theory, we therefore can have the following G-invariant Killing spinors.

The R
2-invariant Killing spinors are spanned by 1 and e1 and there can be up to four of

these. The I-invariant Killing spinors are spanned by all four basis elements and there

can be up to eight of these. In the first two case, the vector Va bilinear in the spinor ǫ

is lightlike, whereas in the last case it is timelike, see table 1. The existence of a globally

defined Killing spinor ǫ, with isotropy group G ∈ Spin(3,1), gives rise to a G-structure.

This means that we have an R
2-structure in the null case and an identity structure in the

timelike case.

In U(1) gauged supergravity, the local Spin(3,1) invariance is actually enhanced to

Spin(3,1) × U(1). Thus, in order to obtain the stability subgroup, one determines the

Lorentz transformations that leave a spinor invariant up to an arbitrary phase factor, which

can then be gauged away using the additional U(1) symmetry. For the representative 1,

one gets in this way an isotropy group generated by X,Y and Γ13 obeying

[Γ13,X] = −2Y , [Γ13, Y ] = 2X , [X,Y ] = 0 ,

i. e. G ∼= U(1)⋉R
2. For ǫ = 1+ ae1 with a 6= 0, the stability subgroup R

2 is not enhanced,

whereas the I of the representative 1 + be2 is promoted to U(1) generated by Γ13 = iΓ•̄•.
The Lorentz transformation matrix aAB corresponding to Λ = exp(iψΓ•̄•) ∈ U(1), with

ΛΓBΛ−1 = aA
BΓA, has nonvanishing components

a+− = a−+ = 1 , a••̄ = e2iψ , a•̄• = e−2iψ . (2.3)

Finally, notice that in U(1) gauged supergravity one can choose the function a in 1 + ae1

real and positive: Write a = R exp(2iδ), use

eδΓ13(1 + ae1) = eiδ1 + e−iδae1 = eiδ(1 + Re1) ,

and gauge away the phase factor exp(iδ) using the electromagnetic U(1).

In the gauged theory the classification of G-invariant spinors is therefore slightly more

complicated. There can be at most two U(1)⋉R
2-invariant Killing spinors, spanned by 1.

The four R
2-invariant spinors are spanned by 1 and e1. Then there are the U(1)-invariant

spinors, spanned by 1 and e2. Finally, for generic enough Killing spinors, one does not fall

in any of the above classes and the common stability subgroup is I. Note that in the gauged

4Note the difference in form compared to the Killing spinors of the corresponding theories in five and six

dimensions: in six dimensions these can be chosen constant [9] while in five dimensions they are constant

up to an overall function [28]. In four dimensions such a choice is generically not possible.
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ǫ G ⊂ Spin(3,1) G ⊂ Spin(3,1) × U(1) Va = D(ǫ,Γaǫ)

1 R
2 U(1)⋉R

2 (1, 0,−1, 0)

1 + ae1 R
2

R
2 (a ∈ R) (1 + |a|2, 0,−1 − |a|2, 0)

1 + be2 I U(1) (1 + |b|2, 0,−1 + |b|2, 0)

Table 1: The representatives ǫ of the orbits of Dirac spinors and their stability subgroups G under

the gauge groups Spin(3,1) and Spin(3,1) × U(1) in the ungauged and gauged theories, respectively.

The number of orbits is the same in both theories, the only difference lies in the stability subgroups

and the fact that a is real in the gauged theory. In the last column we give the vectors constructed

from the spinors.

theory the presence of G-invariant Killing spinors will in general not lead to a G-structure

on the manifold but to stronger conditions. The structure group is in fact reduced to

the intersection of G with Spin(3,1), and hence is equal to the stability subgroup in the

ungauged theory.

We will now consider the possible supersymmetric solutions to the equation Dµǫ = 0

in various sectors of N = 2, D = 4 in terms of the stability subgroup G of the Killing

spinors.

2.2 The ungauged theory

The supercovariant derivative of ungauged minimal N = 2 supergravity in four dimensions

reads

Dµ = ∂µ +
1

4
ωab

µ Γab +
i

4
FabΓ

abΓµ . (2.4)

As mentioned in the introduction, a first point to notice is that there is no complex conju-

gation on the Killing spinor. Therefore, the number of supersymmetries that are preserved

is always even: if ǫ is Killing, then so is iǫ.

First consider purely gravitational solutions with F = 0. In this case the supercovariant

connection truncates to the Levi-Civita connection and has Spin(3,1) holonomy. This

implies the following. If ǫ is Killing, then so are5 Γ3 ∗ ǫ and Γ012 ∗ ǫ (where ∗ denotes

complex conjugation). Together, the operations i, Γ3∗ and Γ012∗ generate four linearly

independent Killing spinors from any null spinor ǫ = 1 or ǫ = 1 + ae1 and eight from any

time-like spinor ǫ = 1+be2. This illustrates the general statement in the introduction: if the

gauge group equals the holonomy, as in this case, then there is only one possible number

of Killing spinors for every stability subgroup. Therefore there are only two classes of

supersymmetric solutions, which are listed in table 2, and which consist of the gravitational

wave and Minkowski space-time, respectively.

Now let us also allow for fluxes F . The supercovariant connection no longer equals the

Levi-Civita connection due to the flux term. In particular, this implies that Γ012∗ no longer

commutes with Dµ. However, this does still hold for the other operation: Γ3 ∗ ǫ is Killing

provided ǫ is. The combined operations of i and Γ3∗ generate four linearly independent

5These operations anti-commute and commute with the Γ-matrices, respectively.
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G = \ N = 4 8

R
2 √ ×

I × √

Table 2: Gravitational solutions with G-invariant Killing spinors in the ungauged theory.

G = \ N = 4 8

R
2 √ ×

I
√ √

Table 3: General solutions with G-invariant Killing spinors in the ungauged theory.

spinors from any null or time-like spinor. Thus the number of supersymmetries is always

N = 4p, as illustrated in table 3. Indeed the generalised holonomy of the supercovariant

connection in the ungauged case is SL(2,H) [4], consistent with the supersymmetries coming

in quadruplets.

The half-supersymmetric solution have been classified by Tod [5] and consist of the

plane wave and the Israel-Wilson-Perjes metric, respectively. The maximally supersym-

metric solutions are AdS2 × S2 and its Penrose limits, the Hpp wave and Minkowski

space-time [6].

2.3 The gauged theory

The supercovariant derivative of gauged minimal N = 2 supergravity in four dimensions

reads

Dµ = ∂µ +
1

4
ωab

µ Γab − iℓ−1Aµ +
1

2
ℓ−1Γµ +

i

4
FabΓ

abΓµ . (2.5)

Due to the gauging the structure of Γ-matrices is richer, but there still is no complex

conjugation on the Killing spinor. Therefore, the number of supersymmetries that are

preserved is always even: if ǫ is Killing, then so is iǫ.

Again, we first consider the purely gravitational solutions. In this case the superco-

variant derivative has SO(3,2) holonomy. The operation Γ012∗ commutes with Dµ and

therefore generates additional Killing spinors. Together, the operations i and Γ012∗ gen-

erate four linearly independent Killing spinors from generic null or time-like spinors. The

exception is the null spinor ǫ = 1 + e1, in which case ǫ and Γ012∗ are linearly dependent,

and hence allows for two instead of four Killing spinors. The possibilities allowed for by

this analysis of the supercovariant derivative can be found in table 4.

However, although all these entries are allowed for by the spinor orbit structure and the

crude analysis of the supercurvature above, not all of them have an actual field theoretic

realisation in supergravity. In other words, there are no solutions to the Killing spinor

equations for all of the above sets of Killing spinors. The lightlike cases were considered

in [16]: The 1/4-BPS case is the Lobatchevski wave while imposing more supersymmetries

leads to the maximally supersymmetric AdS4 solution (with G=1). The N = 4 and G = R
2

– 7 –
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G = \ N = 2 4 6 8

U(1) ⋉ R
2 × × × ×

R
2 √ ◦ × ×

U(1) × ◦ × ×
I × ◦ ◦ √

Table 4: Gravitational solutions with G-invariant Killing spinors in the gauged theory. Check

marks indicate entries with actual solutions, while circles stand for allowed entries which are not

realized.

G = \ N = 2 4 6 8

U(1) ⋉ R
2 ◦ × × ×

R
2 √ ◦ × ×

U(1)
√ √ × ×

I × √ ◦ √

Table 5: General solutions with G-invariant Killing spinors in the gauged theory. Check marks

indicate entries with actual solutions, while circles stand for allowed entries which are not realized.

entry is thus effectively empty. In particular, this implies that imposing a single Killing

spinor 1 + ae1 with a 6= 1 leads to AdS4. Also note that the N = 6 and G = 1 entry must

be empty since any time-like spinor plus 1 + e1 leads to maximal supersymmetry, while all

other Killing spinors come in groups of four. The only remaining entries are N = 4 and

G = U(1) or G = I. Using the results of [13, 16], it is straightforward to show that in these

purely gravitational timelike cases the geometry is given by

ds2 = −z2 + n2

ℓ2
(dt − 2n cosh θdφ)2 +

ℓ2dz2

z2 + n2
+ (z2 + n2)(dθ2 + sinh2 θdφ2) ,

where n = ±ℓ/2. But this is simply AdS4 written as a line bundle over a three-dimensional

base manifold, so both N = 4 entries are empty as well. We conclude that there are no 1/2-

supersymmetric gravitational solutions in the gauged theory, only the 1/4-supersymmetric

Lobatchevski waves and maximally supersymmetric AdS4.

We now come to the general supersymmetric solutions in the gauged case. Due to the

gauging and flux terms, neither Γ012∗ nor Γ3∗ commute with Dµ. Therefore we have the

cases as listed in table 5. The supercovariant connection in the gauged case has generalized

holonomy GL(4, C) [4], again consistent with the supersymmetries coming in doublets.

The 1/4-BPS solutions with G = R
2 and G = U(1) were derived in [13], and we will

show there is no solution with G = U(1) ⋉ R
2. In addition, it was shown in [16] that any

additional supersymmetries in the null case are always timelike, i.e. end up in the N = 4

and G = 1 entry. Again, the N = 4 and G = R
2 entry is empty. It would be interesting to

see if there is a nice explanation for this. In addition, the maximally supersymmetric case

is always AdS4. Recently, it has been shown in [29] that the N = 6 and G = 1 entry is

empty as well, because imposing three complex Killing spinors implies that the spacetime

– 8 –
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is AdS4 and thus maximally supersymmetric. The most general 1/2-BPS solution in the

timelike case remains an open issue and will be studied in this paper.

2.4 Generalized holonomy

In minimal gauged supergravity theories with eight supercharges, the generalized holonomy

group for vacua preserving N supersymmetries, where N = 0, 2, 4, 6, 8, is GL(8−N
2 ,C)

⋉
N
2 C

8−N
2 [4]. To see this, assume that there exists a Killing spinor ǫ1. By a local GL(4,C)

transformation, ǫ1 can be brought to the form ǫ1 = (1, 0, 0, 0)T . This is annihilated by

matrices of the form

A =

(

0 aT

0 A

)

,

that generate the affine group A(3,C) ∼= GL(3,C) ⋉ C
3. Now impose a second Killing

spinor ǫ2 = (ǫ0
2, ǫ2)

T . Acting with the stability subgroup of ǫ1 yields

eAǫ2 =

(

ǫ0
2 + bT ǫ2

eAǫ2

)

, where bT = aT A−1(eA − 1) .

We can choose A ∈ gl(3,C) such that eAǫ2 = (1, 0, 0)T , and b such that ǫ0
2 + bT ǫ2 = 0. This

means that the stability subgroup of ǫ1 can be used to bring ǫ2 to the form ǫ2 = (0, 1, 0, 0).

The subgroup of A(3,C) that stabilizes also ǫ2 consists of the matrices










1 0 b2 b3

0 1 B12 B13

0 0 B22 B23

0 0 B32 B33











∈ GL(2,C) ⋉ 2C
2 .

Finally, imposing a third Killing spinor yields GL(1,C)⋉3C as maximal generalized holon-

omy group, which is however not realized in N = 2, D = 4 minimal gauged supergrav-

ity [16, 29]. It would be interesting to better understand why such preons actually do not

exist. In section 4.3, we explicitely compute the generalized holonomy group for N = 2,

D = 4 minimal gauged supergravity in the case N = 2 and show that it is indeed contained

in A(3,C), supporting thus the classification scheme of [4].

3. Null representative 1 + ae1

In this section we will analyse the conditions coming from a single null Killing spinor. As

we saw in section 2.1, there are two orbits of such spinors, one with representative ǫ = 1

and stability subgroup G = U(1)⋉R
2 and one with ǫ = 1 + ae1 and G = R

2. Owing to

local U(1) gauge invariance, it is always possible to choose the function a real and positive,

so in the following we set a = eχ, χ ∈ R. The Killing spinor equations become

− i

ℓ
A +

1

2
Ω +

eχ

√
2

[(

1

ℓ
+ iφ

)

E•̄ − 2iF+•̄E−
]

= 0 ,

dχ +
i

ℓ
A +

1

2
Ω +

e−χ

√
2

[(

1

ℓ
− iφ

)

E•̄ + 2iF+•̄E−
]

= 0 ,

– 9 –
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ω−• +
eχ

√
2

[

2iF−•E•̄ +

(

1

ℓ
− iφ

)

E−
]

= 0 ,

ω−• +
e−χ

√
2

[

−2iF−•E•̄ +

(

1

ℓ
+ iφ

)

E−
]

= 0 , (3.1)

where φ ≡ F+− + F •̄• and Ω ≡ ω+− + ω•̄•.

The conditions for the special U(1)⋉R
2-orbit with ǫ = 1 can be obtained as the singular

limit χ → −∞ of the above equations. Note however that, in this limit, the second line

implies the constraint ℓ−1 − iφ = 0, while the fourth line leads to ℓ−1 + iφ = 0. Clearly,

for ℓ−1 6= 0 this does not allow for a solution. Hence, in the gauged theory, there are no

backgrounds with U(1)⋉R
2-invariant Killing spinors.

The only null possibility is therefore given by the R
2-invariant Killing spinor ǫ =

1 + eχe1. We will now analyse the above conditions for the generic case with χ finite.

In fact, we will furthermore assume it is positive. This does not constitute any loss of

generality since one can flip the sign of χ by changing chirality (a spinor 1 + eχe1 with χ

negative is gauge equivalent to a spinor e1 + eχ̃1 with χ̃ = −χ positive), and hence the

resulting background will not depend on this sign.

From the last two equations one obtains the constraints

F−• = F−•̄ = 0 , φ = − i

ℓ
tanh χ (3.2)

on the field strength, as well as

ω−• = ω−•̄ = − 1√
2ℓ cosh χ

E− (3.3)

for the spin connection. (3.2) implies F+− = 0 and F •̄• = − i
ℓ tanh χ. The first two

equations of (3.1) yield then

ω+− = 2eχH3E
− − 1

ℓ

e2χ

cosh χ
E1 ,

ω•̄• = 2i sinh χH1E
− +

i

ℓ

cosh 2χ

cosh χ
E3 ,

A = −ℓ cosh χH1E
− − sinhχE3 ,

dχ = −2 cosh χH3E
− +

2

ℓ
sinhχE1 , (3.4)

where E1 = (E• + E•̄)/
√

2, iE3 = (E• − E•̄)/
√

2, and we defined

F+• + F+•̄
√

2
= H1 ,

F+• −F+•̄
√

2
= iH3 .

In order to proceed, we distinguish two subcases, namely dχ = 0 and dχ 6= 0.

– 10 –
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3.1 Constant Killing spinor, da = 0

If a and hence χ are constant, eq. (3.4) implies χ = H3 = 0. Next we impose vanishing

torsion. The torsion two-form reads

T− = dE− +
2

ℓ
E1 ∧ E− ,

T+ = dE+ − E1 ∧
(

ω+1 +
E+

ℓ

)

+ ω+3 ∧ E3 ,

T 1 = dE1 + E− ∧
(

ω+1 +
E+

ℓ

)

,

T 3 = dE3 +
1

ℓ
E1 ∧ E3 − ω+3 ∧ E− . (3.5)

From T− = 0 one gets E− ∧ dE− = 0, so by Fröbenius’ theorem there exist two functions

η and u such that locally

E− = ηdu .

Plugging this into T− = 0 yields

η

(

d log η +
2

ℓ
E1

)

∧ du = 0 ,

so that there exists a function ξ such that

E1 = − ℓ

2η
dη + ξdu .

The gauge field and its field strength can now be written as

A = −ℓηH1du , F =
ℓ

2
H1dη ∧ du ,

and the Bianchi identity F = dA implies

(

dH1 +
3

2
H1d log η

)

∧ du = 0 .

This means that H1η
3/2 can depend only on u,

H1η
3/2 = −ϕ′(u)

ℓ
,

where the prefactor and the derivative were chosen in order to conform with the notation

of [13]. Let us define a new coordinate x = −η−1/2, so that E1 = ℓ
xdx + ξdu, E− = x−2du

and

A = −xϕ′(u)du . (3.6)

One can now use part of the residual gauge freedom, given by the stability subgroup R
2 of

the null spinor 1+ae1, in order to simplify E1. To this end, consider an R
2 transformation

with group element

Λ = 1 + µX + νY ,

– 11 –
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where X and Y are given in (2.2). Defining α = µ + iν, this can also be written as

Λ = 1 + αΓ+• + ᾱΓ+•̄ . (3.7)

Given the ordering A,B = +,−, •, •̄, the Lorentz transformation matrix aAB corresponding

to Λ ∈ R
2 ⊆ Spin(3,1) reads

aAB =











0 1 0 0

1 −4|α|2 2ᾱ 2α

0 −2ᾱ 0 1

0 −2α 1 0











. (3.8)

The transformed vielbein αEA = aA
BEB is thus given by

αE• = E• − 2αE− , αE1 = E1 −
√

2 (α + ᾱ)E− ,
αE•̄ = E•̄ − 2ᾱE− , αE3 = E3 +

√
2i (α − ᾱ) E− ,

αE− = E− , αE+ = E+ + 2ᾱE• + 2αE•̄ − 4|α|2E− . (3.9)

Choosing α + ᾱ = ξx2/
√

2, we can eliminate E1
u, so one can set ξ = 0 without loss of

generality. Note that this still leaves a residual gauge freedom associated to the imaginary

part of α, which will be used below.

From dT 3 = 0 we get d(ω+3/x)∧ du = 0, and thus there exist two functions β, β̃ such

that

ω+3 = −xdβ + β̃du .

Plugging this into T 3 = 0 yields d(xE3 + βdu) = 0, which is solved by

E3 = − ℓ

x
dy + βdu , (3.10)

where y denotes some function that we shall use as a coordinate. Using the remaining

gauge freedom (3.8) with Imα = −βx2/2
√

2 allows to set also β = 0. The equation T 1 = 0

tells us that ω+1 + E+/ℓ = γdu for some function γ. Using this together with T+ = 0, one

shows that

d
(

E− ∧ E+
)

= −2

x
dx ∧

(

E− ∧ E+
)

,

which means that the surface described by E− and E+ is integrable, so that

E+ = ℓ2G
2

du + hdV , (3.11)

for some functions G, h, V . The metric becomes then

ds2 = 2E−E+ +
(

E1
)2

+
(

E3
)2

=
ℓ2

x2

(

Gdu2 +
2h

ℓ2
dudV + dx2 + dy2

)

. (3.12)

Finally, the equation T+ = 0 implies

∂xh = ∂yh = 0 , ∂V G =
2

ℓ2
∂uh , (3.13)
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γ =
xℓ

2
∂xG , β̃ = −xℓ

2
∂yG .

h can be eliminated by introducing a new coordinate v(u, V ) with ∂V v = h/ℓ2 and shifting

G → G + 2∂uv, which leads to

ds2 =
ℓ2

x2

(

Gdu2 + 2dudv + dx2 + dy2
)

. (3.14)

Note that, due to (3.13), G is independent of v, therefore ∂v is a Killing vector. One easily

verifies that it coincides with the Killing vector constructed from the Killing spinor as

− ℓ2

2
√

2
D(ǫ,Γµǫ).

All that remains is to impose the Maxwell and Einstein equations. One finds that

the former are automatically satisfied by the gauge potential (3.6). The same holds for

the Einstein equations, except for the uu-component, which gives the Siklos equation with

sources

∆G − 2

x
∂xG = −4x2

ℓ2
ϕ′(u)2 . (3.15)

This family of solutions enjoys a large group of diffeomorphisms which leave the solution

invariant in form but change the function G. This is the Siklos-Virasoro invariance, dis-

cussed in [33, 16]. In conclusion, the geometry of solutions admitting the constant null

spinor 1 + e1 is given by the Lobachevski waves with metric (3.14) and gauge field (3.6),

where G satisfies (3.15) and ϕ(u) is arbitrary. This coincides exactly with the results of [13],

where it was shown moreover that there is a second covariantly constant spinor iff the wave

profiles G and ϕ have the form

Gα(x, y, u) = −x4

ℓ2
+ 2αx3 − α2ℓ2(x2 + y2) , ϕ(u) = u , (3.16)

up to Siklos-Virasoro transformation, with α ∈ R constant. In this case, the solution does

also belong to the timelike class [13]. While the α 6= 0 solution only has the obvious Killing

vectors ∂v and ∂y, the special α = 0 case is maximally symmetric with a five-dimensional

isometry group.

3.2 Killing spinor with da 6= 0

If da and hence also dχ do not vanish, one can use the R
2 stability subgroup of the spinor

1 + eχe1 to eliminate the fluxes F+• and F+•̄. To see this, observe that under an R
2

transformation (3.8),

αF+• = F+• − 2iα

ℓ
tanh χ , αF •̄• = F •̄• ,

so by choosing α = − iℓ
2 F+• coth χ one can achieve αF+• = 0. Note that this would not be

possible if χ = 0. With this gauge fixing, one has

dχ =
2

ℓ
sinhχE1 , A = − sinhχE3 , F = −1

ℓ
tanh χE1 ∧ E3 . (3.17)
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Next we impose vanishing torsion. Using (3.17), one easily shows that T− = 0 leads to

d
[(

e2χ − 1
)

E−]

= 0 ,

and therefore one can introduce a function u with

(

e2χ − 1
)

E− = du . (3.18)

Before we come to the other torsion components, let us consider the Bianchi identity and

the Maxwell equations. The gauge field strength reads

F =
dχ

sinh 2χ
∧ A .

Requiring it to be equal to dA implies that A/
√

tanh χ is closed, so that locally

A =
√

tanh χdΨ . (3.19)

Note that the functions χ, u and Ψ must be independent, because otherwise E1, E− and E3

would not be linearly independent. We can thus use these three functions as coordinates.

Using
∗F = −1

ℓ
tanh χE− ∧ E+ ,

the Maxwell equations d∗F = 0 imply

d
(

E− ∧ E+
)

+ 2
dχ

sinh 2χ
∧

(

E− ∧ E+
)

= 0 .

By Fröbenius’ theorem and (3.18), E+ can thus be written as

E+ =
K̃
2

du + hdV ,

where K̃, h and V are some functions, and we can use V as the remaining coordinate.

Substituing E+ into the Maxwell equations one obtains a constraint on the function h,

d

(

h

e2χ + 1

)

∧ du ∧ dV = 0 ,

and hence

h = h0(u, V )
(

e2χ + 1
)

.

In what follows, we define K = K̃/(e2χ + 1) and use ω+1 = (ω+• + ω+•̄)/
√

2, ω+3 =

(ω+• − ω+•̄)/
√

2i. We now come to the remaining torsion components. From T 3 = 0 and

T 1 = 0 one obtains respectively

ω+3 = AE− , ω+1 = − E+

ℓ cosh χ
+ BE− ,

where A and B are some functions to be determined. Finally, T+ = 0 yields

∂V K = 2∂uh0 , A = −1

2

(

e4χ − 1
) sinhχ√

tanh χ
∂ΨK , B =

1

ℓ

(

e4χ − 1
)

sinhχ∂χK .
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The line element is given by

ds2 = 2E−E+ +
(

E1
)2

+
(

E3
)2

= coth χ
(

Kdu2 + 2h0dudV
)

+
ℓ2dχ2

4 sinh2 χ
+

dΨ2

sinhχ cosh χ
. (3.20)

As before, one can eliminate h0 by introducing a new coordinate v(u, V ) with ∂V v = h0

and shifting K → K + 2∂uv, whereupon the metric becomes

ds2 = coth χ
(

Kdu2 + 2dudv
)

+
ℓ2dχ2

4 sinh2 χ
+

dΨ2

sinh χ cosh χ
. (3.21)

Notice that, owing to (3.20), K is independent of v, therefore ∂v is a Killing vector. It

coincides with the Killing vector −
√

2D(ǫ,Γµǫ) constructed from the Killing spinor. All

that remains now is to impose Einstein’s equations. One finds that they are all satisfied

except for the uu component, which yields again a Siklos-type equation for K,

∂2
ΨK + 4 tanh χ∂2

χK− 2

cosh2 χ
∂χK = 0 . (3.22)

In conclusion, the bosonic fields for a configuration admitting a null Killing spinor with

dχ 6= 0 are given by (3.19) and (3.21), with K satisfying (3.22).6 As we will discuss in

section 5.3, the K = 0 solution is of Petrov type D and represents a bubble of nothing

in anti-De Sitter space-time. When K 6= 0, the metric becomes of Petrov type II and

the Weyl scalar signalling the presence of gravitational radiation acquires a non-vanishing

value. Hence the general solution represents a gravitational wave on a bubble of nothing.

To our knowledge these solutions have not featured in the literature before.

3.3 Half-supersymmetric backgrounds

In the previous subsections we have addressed the conditions for preserving one null Killing

spinor of the form ǫ1 = 1 or ǫ1 = 1 + eχe1. It is natural to enquire about the possibility

of these backgrounds admitting an additional Killing spinor with the same R
2 stability

subgroup, i.e. of the form ǫ2 = c01 + c1e1. Using the fact that ǫ1 is Killing, the second

Killing spinor equation Dµǫ2 = 0 can then be rewritten as

(c0 − c1)Dµ1 + ∂µc01 + ∂µc1e1 = 0 , (3.23)

in the U(1)⋉R
2 case and

(c0 − c1e
−χ)Dµ1 + ∂µc01 + (∂µc1 − c1∂µχ)e1 = 0 , (3.24)

in the R
2 case. Furthermore, we can assume that (c0 − c1) 6= 0 and (c0 − c1e

−χ) 6= 0

in the two cases, respectively, since otherwise the second Killing spinor would be linearly

6This solution escaped a majority of the present authors in [13]. The reason for this is that equ. (4.32)

of [13] is not correct; it must be R+−ij = 0, which yields no information on the constant κ. Thus, in addition

to the solutions with κ = 0 found in [13] (the Lobachevski waves), there are also the κ = 1 solutions, which

are exactly the ones found here with dχ 6= 0.
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dependent on the first and there would not be any additional constraints. Hence the e2

and e12 components of Dµ1 have to vanish separately. In particular, this implies that

ω−• = 0 (as can be seen from the third line of (3.1) in the singular limit χ → −∞).

However, this is clearly incompatible with (3.3). We conclude that, in the gauged theory,

there are no backgrounds with four R
2-invariant Killing spinors. In other words, there are

no half-supersymmetric backgrounds with an R
2-structure. This is unlike the ungauged

case, where the half-supersymmetric gravitational waves provide such solutions.

Therefore, the only possibility to augment the supersymmetry of the null solutions

above is to add a Killing spinor which breaks the R
2 invariance, i.e. with a non-vanishing

e2 and/or e12 component. From a linear combination of the first and second Killing spinor

one can then always construct a time-like Killing spinor, and hence this brings us to the

next section. For the convenience of the reader, we will already summarise how to restrict

the 1/4-supersymmetric null solutions to allow for a time-like Killing spinor as well.

For the case with constant null Killing spinors, dχ = 0, the restriction was already

discussed in [13] and is given in (3.16). For the other case, with dχ 6= 0, it is straightforward

to show that the solution (3.19), (3.21) admits a second Killing spinor iff ∂χG = ∂ΨG = 0,

so that G depends only on u. By a simple diffeomorphism one can then set G = 0. The

general solution to the Killing spinor equations reads in this case

ǫ = λ1(1 + eχe1) +
λ2√

e4χ − 1
(e2 + eχe1 ∧ e2) , (3.25)

where λ1,2 ∈ C are constants. The invariants constructed from ǫ, as defined in appendix

B, are

V =
√

2 coth χ(|λ2|2dv − |λ1|2du) − 2i

sinh 2χ
(λ2λ̄1 − λ̄2λ1) dΨ ,

B = −
√

2(|λ1|2du + |λ2|2dv) +
ℓeχ

√
e4χ − 1 sinhχ

(λ̄1λ2 + λ1λ̄2) dχ ,

f = i(λ1λ̄2 − λ̄1λ2)
√

tanh χ , g = (λ̄1λ2 + λ1λ̄2)
√

coth χ .

The norm of the Killing vector V is given by

V 2 = − 2

sinh 2χ
(λ̄1λ2 + λ1λ̄2)

2 − 4|λ1λ2|2 tanh χ .

Since χ > 0, this is negative unless λ1 = 0 or λ2 = 0, so indeed the solution (3.19), (3.21)

with G = 0 must belong also to the timelike class. It turns out that it is identical to the

bubble of nothing of section 5.3 with imaginary b and L < 0. The coordinate transformation

u =
√

2A2(t − Ly) − z

2
√

2A2
, v = −

√
2A2(t − Ly) − z

2
√

2A2
,

Ψ = −2A2t , χ = artanh
X2

A4
(3.26)

with A8 = −1/4L brings the metric (3.21) (with G = 0) to (5.60), and the field strength

of (3.19) to (5.61). Note that, in the new coordinates, the above invariants become V = ∂t

as a vector, and B = dz, in agreement with section 4.2.
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4. Timelike representative 1 + be2

We will now turn to the timelike case and first recover the general 1/4-BPS solutions [13].

Afterwards we will study the conditions for 1/2 supersymmetry. This will complete the

classification since we already know that no 3/4-supersymmetric solutions can arise and

AdS4 is the unique maximally supersymmetric possibility.

4.1 Conditions from the Killing spinor equations

Acting with the supercovariant derivative (2.5) on the representative 1 + be2 yields the

linear system

∂+b +
b

2
ω•̄•

+ − b

2
ω+−

+ − i

ℓ
bA+ = 0 ,

1

2
ω•̄•

+ +
1

2
ω+−

+ − i

ℓ
A+ +

b

ℓ
√

2
+

ib√
2
F •̄• +

ib√
2
F+− = 0 ,

ω•−
+ + i

√
2bF•− = ω•+

+ = 0 , (4.1)

∂−b +
b

2
ω•̄•
− − b

2
ω+−
− − i

ℓ
bA− +

1

ℓ
√

2
+

i√
2
F •̄• − i√

2
F+− = 0 ,

1

2
ω•̄•
− +

1

2
ω+−
− − i

ℓ
A− = 0 ,

b ω•+
− + i

√
2F•+ = ω•−

− = 0 , (4.2)

∂•b +
b

2
ω•̄•
• − b

2
ω+−
• − i

ℓ
bA• − i

√
2F •̄− = 0 ,

1

2
ω•̄•
• +

1

2
ω+−
• − i

ℓ
A• − i

√
2bF •̄+ = 0 ,

ω•−
• +

b

ℓ
√

2
− ib√

2
F •̄• − ib√

2
F+− = 0 ,

b ω•+
• +

1

ℓ
√

2
− i√

2
F •̄• +

i√
2
F+− = 0 , (4.3)

∂•̄b +
b

2
ω•̄•
•̄ − b

2
ω+−
•̄ − i

ℓ
bA•̄ = 0 ,

1

2
ω•̄•
•̄ +

1

2
ω+−
•̄ − i

ℓ
A•̄ = 0 ,

ω•−
•̄ = b ω•+

•̄ = 0 . (4.4)

From eqs. (4.1)–(4.4) one obtains the gauge potential and the fluxes in terms of the spin

connection and the function b,

A+ =
iℓ

2

(

∂+b̄

b̄
− ∂+b

b
− ω•̄•

+

)

, A− =
iℓ

2
ω••̄
− , A• =

iℓ

2
(ω••̄

• + ω+−
• ) ,

F+− =
i√
2
(b ω•+

• − b−1ω•−
• ) , F•+ =

i

b̄
√

2
ω+−
•̄ ,

F••̄ =
i√
2
(b ω•+

• + b−1ω•−
• ) +

i

ℓ
, F•− =

i

b
√

2
ω•−

+ . (4.5)
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Furthermore, the system (4.1)–(4.4) determines almost all components of the spin connec-

tion (with the exception of ω••̄) in terms of the function b and its spacetime derivatives,

ω+−
+ =

∂+b

b
+

∂+b̄

b̄
, ω+−

− = 0 , ω+−
• =

∂•b̄

b̄
,

ω+•
+ = ω+•

•̄ = 0 , ω+•
− = −∂•̄b

b2b̄
, ω+•

• =
∂−b

b
+

√
2

bℓ
,

ω−•
+ = −b ∂•̄b̄ , ω−•

− = ω−•
•̄ = 0 , ω−•

• =
∂+b̄

b̄
+

b
√

2

ℓ
. (4.6)

In what follows, we assume b 6= 0. One easily shows that b = 0 leads to ℓ−1 = 0, so this

case appears only in ungauged supergravity.

4.2 Geometry of spacetime

In order to obtain the spacetime geometry, we consider the spinor bilinears

Vµ = D(ǫ,Γµǫ) , Bµ = D(ǫ,Γ5Γµǫ) ,

whose nonvanishing components are

V+ =
√

2 b̄b , V− = −
√

2 , B+ =
√

2 b̄b , B− =
√

2 .

As V 2 = −4b̄b = −B2, V is timelike and B is spacelike. Using eqs. (4.1)–(4.4), it is

straightforward to show that V is Killing and B is closed, i. e. ,

∂AVB + ∂BVA − ωC
B|AVC − ωC

A|BVC = 0 ,

∂ABB − ∂BBA − ωC
B|ABC + ωC

A|BBC = 0 .

There exists thus a function z such that B = dz locally. Let us choose coordinates (t, z, xi)

such that V = ∂t and i = 1, 2. The metric will then be independent of t. Note also that

the system (4.1)–(4.4) yields

∂tb =
√

2 (|b|2∂− − ∂+)b = 0 ,

so b is time-independent as well. In terms of the vierbein EA
µ the metric is given

ds2 = 2E+E− + 2E•E•̄ , (4.7)

where

E+
µ =

Bµ + Vµ

2
√

2|b|2
, E−

µ =
Bµ − Vµ

2
√

2
.

From V 2 = −4|b|2 and V = ∂t as a vector we get Vt = −4|b|2, so that V = −4|b|2(dt + σ)

as a one-form, with σt = 0. Furthermore, V • = 0 yields E•
t = 0, and thus

E• = E•
zdz + E•

i dxi .

The component E•
z can be eliminated by a diffeomorphism

xi = xi(x′j , z) ,
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with

EI
i

∂xi

∂z
= −EI

z , I = •, •̄ .

As the matrix EI
i is invertible,7 one can always solve for ∂xi/∂z. Note that the metric is

invariant under

t → t + χ(xi, z) , σ → σ − dχ ,

where χ(xi, z) denotes an arbitrary function. This second gauge freedom can be used to

eliminate σz. Hence, without loss of generality , we can take σ = σidxi, and the metric (4.7)

becomes

ds2 = −4|b|2(dt + σidxi)2 +
dz2

4|b|2 + 2E•
i dxiE•̄

j dxj . (4.8)

Next one has to impose vanishing torsion,

∂µEA
ν − ∂νE

A
µ + ωA

µBEB
ν − ωA

νBEB
µ = 0 .

One finds that some of these equations are already identically satisfied, while the remaining

ones yield (using the expressions (4.6) for the spin connection) the constraints

∂zσi = − 1

4|b|2 (E•̄
i Ej

•̄ − E•
i Ej

•)∂j ln(b/b̄) , (4.9)

∂iσj − ∂jσi = (E•
i E•̄

j − E•
j E•̄

i )

(

∂z ln(b/b̄) +
1

bℓ
− 1

b̄ℓ

)

, (4.10)

ω••̄
t = −2|b|2∂z ln(b/b̄) +

2b

ℓ
− 2b̄

ℓ
, (4.11)

∂iE
•
j − ∂jE

•
i = (E•

i E•̄
j − E•

j E•̄
i )ω••̄

•̄ , (4.12)

as well as
[

∂z + ω••̄
z +

1

2
∂z ln(b̄b) +

1

2ℓ

(

1

b
+

1

b̄

)]

E•
i = 0 . (4.13)

In (4.9), Ei
I denotes the inverse of EJ

j . In order to obtain the above equations, one has to

make use of the inverse tetrad

E+ = − 1

2
√

2
∂t +

√
2|b|2∂z , E− =

1

2
√

2|b|2
∂t +

√
2 ∂z , E• = Ei

•(∂i − σi∂t) .

(4.13) can be solved to give

E•
i =

1

|b| Ê
•
i exp

[

−
∫

dz ω••̄
z − 1

2ℓ

∫

dz

(

1

b
+

1

b̄

)]

, (4.14)

where Ê•
i is an integration constant that depends only on the coordinates xj. At this point

it is convenient to use the residual U(1) gauge freedom of a combined local Lorentz and

gauge transformation to eliminate ω••̄
z . This is accomplished by the transformation (2.3),

with

ψ =
i

2

∫

dz ω••̄
z .

7One has det(EI
i ) = −det(EA

µ ), and the latter is always nonzero.
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Note that ψ is real, as it must be. Defining

Φ := − 1

2ℓ

∫

dz

(

1

b
+

1

b̄

)

, (4.15)

we have thus

E•
i =

1

|b|Ê
•
i exp Φ . (4.16)

Using (4.16) in (4.12), one gets for the only remaining unknown component ω••̄
• of the spin

connection

ω••̄
• =

[

ω̂••̄
• − Êi

•∂i

]

|b| exp(−Φ) ,

where ω̂••̄
• denotes the spin connection following from the zweibein ÊI

i .

In what follows, we shall choose the conformal gauge for the two-metric hij = ÊIiÊ
I
j ,

i. e. ,

hij = e2ξ[(dx1)2 + (dx2)2] . (4.17)

with ξ depending only on the coordinates xi. Furthermore, we choose an orientation such

that

Ê•
i Ê•̄

j − Ê•
j Ê•̄

i = −ie2ξǫij ,

where ǫ12 = 1. To be concrete, we shall take

(ÊI
i ) =

1√
2
eξ

(

1 i

1 −i

)

.

The eqs. (4.9) and (4.10) then simplify to

∂zσi = − i

4|b|2 ǫij∂j ln(b/b̄) , (4.18)

∂iσj − ∂jσi = − i

|b|2 e2(Φ+ξ)ǫij

(

∂z ln(b/b̄) +
1

bℓ
− 1

b̄ℓ

)

. (4.19)

Moreover, one has

ω••̄
• = −∂• ln

(

|b|e−Φ−ξ
)

. (4.20)

In [13] it has been shown that in the case where the Killing vector constructed from the

Killing spinor is timelike, the Einstein equations follow from the Killing spinor equations,

so all that remains to do at this point is to impose the Bianchi identity and the Maxwell

equations. Using the spin connection (4.6) and (4.11) in (4.5), the gauge potential and the

field strength become

A = i(dt + σ)(b − b̄) +
ℓ

2
ǫij∂j(Φ + ξ) dxi − iℓ

4
d ln(b/b̄) ,

F = i(dt + σ) ∧ d (b̄ − b) +
1

4|b|2 dz ∧ dxiǫij∂j(b + b̄)

+
1

2|b|2
[

∂z(b + b̄) +
1

ℓ

]

e2(Φ+ξ)ǫijdxi ∧ dxj . (4.21)
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The Bianchi identity F = dA yields

∆(Φ + ξ) =
2

ℓ
e2(Φ+ξ)

[

∂z
1

b
+ ∂z

1

b̄
− 1

b2ℓ
− 1

b̄2ℓ
+

1

b̄bℓ

]

, (4.22)

with ∆ = ∂i∂i denoting the flat space Laplacian in two dimensions. As for the Maxwell

equations,

∂µ(
√−gFµν) = 0 ,

the only nontrivial information comes from the t-component, which gives

4e2(Φ+ξ)

[

b2∂2
z

1

b
− b̄2∂2

z

1

b̄
− 3b

ℓ
∂z

1

b
+

3b̄

ℓ
∂z

1

b̄
+

1

bℓ2
− 1

b̄ℓ2

]

+ b2∆
1

b
− b̄2∆

1

b̄
= 0 , (4.23)

where we used eqs. (4.18) and (4.19).

Let us now show that the equations (4.22) and (4.23) are actually the same as the ones

in [16]. If we set

F = − 1

ℓb̄
, eφ = 2eΦ+ξ , (4.24)

(4.22) yields exactly equation (2.3) of [16]. On the other hand, deriving (4.22) with respect

to z and using (4.15), one obtains

∆A + e2φ
[

3A∂zA − 3B∂zB + A3 − 3AB2 + ∂2
zA

]

= 0 , (4.25)

where A and B denote the real and imaginary part of F respectively. This can be used

in (4.23) to get

∆B + e2φ
[

∂2
zB + 3B∂zA + 3A∂zB − B3 + 3A2B

]

= 0 ,

which, together with (4.25), yields

∆F + e2φ
[

F 3 + 3F∂zF + ∂2
zF

]

= 0 , (4.26)

i. e. , equation (2.2) of [16]. For a complete identification of the present results with the

ones in [16], one also has to set σ = ω.

In conclusion, the metric of the general 1/4-supersymmetric solution is given by

ds2 = −4|b|2(dt + σ)2 +
1

4|b|2
(

dz2 + 4e2(Φ+ξ)dw dw̄
)

, (4.27)

where b and φ are determined by the system (4.22), (4.23) and w = x1 + ix2 ≡ x + iy.

The one-form σ follows then from (4.18) and (4.19), and the gauge field strength is given

by (4.21). Note that (4.23) represents also the integrability condition for (4.18), (4.19). As

noted in [16], this system of equations is invariant under PSL(2,R) transformations.8 If

we define a new coordinate z′ through the Möbius transformation

z′ =
αz + β

γz + δ
, (4.28)

8It might be of interest to investigate the possible relation between this ’hidden symmetry’ and the

Ehlers group for solutions of four-dimensional vacuum gravity with a Killing vector.
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with α, β, γ and δ arbitrary real constants satisfying αδ − βγ = 1, then the functions

b̃(z′, xi) and Φ̃(z′, xi) defined by

1

b̃
=

1

(γz′ − α)2b
− 2lγ

γz′ − α
, eΦ̃ =

(

γz′ − α
)2

eΦ , (4.29)

solve the system in the new coordinate system (z′, xi), with the function ξ(xi) left invariant

and z seen as a function of z′. This symmetry allows to generate new BPS solutions

from the known ones. Note however that it is only a symmetry of the equations for 1/4

supersymmetry, and if we apply it to solutions with additional Killing spinors, it will in

general not preserve them, as we shall show explicitely in some examples.

4.3 Half-supersymmetric backgrounds

We now would like to investigate the possibility of adding a second Killing spinor. Since

the first Killing spinor ǫ1 has stability subgroup 1, one cannot use Lorentz transformations

to bring the second spinor to a preferred form. Therefore we use the most general form

ǫ2 = c01 + c1e1 + c2e2 + c12e1 ∧ e2 . (4.30)

The corresponding linear system simplifies significantly after inserting the results from ǫ1.

These determine all the fluxes and the spin connection in terms of the functions b, ξ and

their derivatives. First it is convenient to introduce the new basis9

α =











α0

α1

α2

α12











=











c0

b−1c2 − c0

b̄c1

c12











,

in which the Killing spinor equations for ǫ2 read

(∂A + MA)α = 0 , (4.31)

with the connection MA given by

M+ =













0 −∂+ ln b̄ 0 0

0 ∂+ ln b̄ −∂• ln b ∂• ln b

0 0 b̄−b√
2ℓ

+ 1
2∂+ ln b

b̄
−

√
2

ℓ b̄ − ∂+ ln b

0 −|b|2∂•̄ ln b̄ 0 b̄−b√
2ℓ

− 1
2∂+ ln(b̄b)













,

M− =













0 0 |b|−2∂• ln b̄ −|b|−2∂• ln b̄

0 ∂− ln b −|b|−2∂• ln b̄ |b|−2∂• ln b̄

0 ∂•̄ ln b b−b̄√
2ℓ|b|2 − 1

2∂− ln(b̄b) 0

0 0 −
√

2
ℓb̄

− ∂− ln b̄ b−b̄√
2ℓ|b|2 + 1

2∂− ln b̄
b













,

9Note that ǫ1 = (1, 0, 0, 0) in this basis.
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M• =











0 −∂• ln b̄ 0 0

0 ∂• ln(b̄b) 0 0

0 −
√

2
ℓ b̄ − ∂+ ln b −∂• ln

(

|b|e−Φ−ξ
)

0

0
√

2
ℓ b + ∂+ ln b̄ 0 −∂• ln

(

|b|e−Φ−ξ
)











,

M•̄ =

















0 0 −∂− ln b̄ ∂− ln b̄ +
√

2
ℓb̄

0 0 ∂− ln(b̄b) +
√

2
ℓb −∂− ln(b̄b) −

√
2

ℓb̄

0 0 ∂•̄ ln
(√

b
b̄
e−Φ−ξ

)

−∂•̄ ln b

0 0 −∂•̄ ln b̄ ∂•̄ ln

(

√

b̄
be

−Φ−ξ

)

















.

Let us first of all consider the simpler possibility of a second Killing spinor of the

form ǫ2 = c01 + c2e2. As discussed in section 2.1, both ǫ1 and ǫ2 are invariant under

the same U(1) symmetry, and hence this case constitutes the G = U(1) case with four

supersymmetries. As can easily be seen from the above Killing spinor equations with

α1 6= 0 and α2 = α12 = 0, this restricts the derivatives of the coefficient b to be

∂−b = −
√

2

ℓ
, ∂+b = −

√
2bb̄

ℓ
, ∂•b = ∂•̄b = 0 . (4.32)

Hence this corresponds to ∂zb = −1/ℓ. As will be discussed in section 5.1, this restriction

uniquely leads to the half-supersymmetric anti-Nariai space-time. Hence AdS2 ×H2 is the

only possibility for backgrounds with four U(1)-invariant Killing spinors.

In the more general case with α2 and α12 non-vanishing, i.e. with trivial stability

subgroup, the Killing spinor equations do not so readily provide information about b and

one has to resort to their integrability conditions. The first integrability conditions for the

linear system (4.31) are

Nµνα ≡ (∂µMν − ∂νMµ + [Mµ,Mν ])α = 0 , (4.33)

where the matrices Mµ = EA
µ MA are given by

Mt =
√

2(|b|2M− − M+) , Mz =
1

2
√

2|b|2
(M+ + |b|2M−) ,

Mw = σwMt +
1√
2|b|

eΦ+ξM• , Mw̄ = σw̄Mt +
1√
2|b|

eΦ+ξM•̄ ,

and we introduced the complex coordinates w = x+iy, w̄ = x−iy. For half-supersymmetric

solutions, the six matrices Nµν must have rank two. (As at least one Killing spinor ex-

ists, namely ǫ1 = (1, 0, 0, 0), we already know that the Nµν can have at most rank three.

Rank one is not possible, because 3/4 BPS solutions cannot exist [29]. Rank zero corre-

sponds to the maximally supersymmetric case, which implies that the spacetime geometry

is AdS4 [13].) Let us define

Ñµν ≡ SNµνT ,
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with

S =











1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1











, T =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1











.

The similarity transformation S corresponds to adding the first line to the second one and

T adds the last column to the third one. This does not alter the rank of Nµν . One finds

Ñwt =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2b∂∂z b̄ + 2

ℓ
∂b̄ − 2|b|

b̄
e−Φ−ξ

`

∂2b̄ + 1

b̄
∂b̄∂b̄

0
+2b

`

∂z b̄ + 1

ℓ

´

∂ ln b̄
0

−2∂(Φ + ξ)∂b̄
´

2b̄∂∂zb + 2

ℓ
∂b − 2|b|

b
e−Φ−ξ

`

∂2b + 1

b
∂b∂b

0
+2b̄

`

∂zb + 1

ℓ

´

∂ ln b
0

−2∂(Φ + ξ)∂b)

2|b|3e−Φ−ξ∂̄∂ ln b 2b̄∂∂zb
0

−2|b|3eΦ+ξb−2
`

2∂zb + 1

ℓ

´ `

∂zb + 1

ℓ

´

2

ℓ
∂b

+2b̄
`

∂zb + 1

ℓ

´

∂ ln b

2|b|3e−Φ−ξ∂̄∂ ln b̄ 2b∂∂z b̄ −
2

ℓ
∂b̄

0
−2|b|3eΦ+ξb̄−2

`

2∂z b̄ + 1

ℓ

´ `

∂z b̄ + 1

ℓ

´ − 2

ℓ
∂b̄

+2b
`

∂z b̄ + 1

ℓ

´

∂ ln b̄

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

Ñw̄t =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2b∂̄∂z b̄ −2|b|e−Φ−ξ∂̄∂ ln b̄
0

+2b
`

∂z b̄ + 1

ℓ

´

∂̄ ln b̄
− 2

ℓ|b|
eΦ+ξ

`

2∂z b̄ + 1

ℓ

´

+ 2b

|b|b̄
eΦ+ξ

`

2∂z b̄ + 1

ℓ

´

“

∂z b̄ + b−b̄
ℓb

”

2b̄∂̄∂zb −2|b|e−Φ−ξ∂̄∂ ln b
0

+2b̄
`

∂zb + 1

ℓ

´

∂̄ ln b
2

ℓ|b|
eΦ+ξ

`

2∂zb + 1

ℓ

´

+ 2b̄
|b|b

eΦ+ξ
`

2∂zb + 1

ℓ

´ `

∂zb + 1

ℓ

´

2|b|̄be−Φ−ξ
`

∂̄2b + 1

b
∂̄b∂̄b 2b̄∂̄∂zb + 2

ℓ
∂̄b

0
−2∂̄(Φ + ξ)∂̄b

´

6

ℓ
∂̄b

+2b̄
`

∂zb + 1

ℓ

´

∂̄ ln b

2|b|be−Φ−ξ
`

∂̄2b̄ + 1

b̄
∂̄b̄∂̄b̄ 2b∂̄∂z b̄ − 4

ℓ
∂̄b̄

0
−2∂̄(Φ + ξ)∂̄b̄

´ − 6

ℓ
∂̄b̄

+2b
`

∂z b̄ + 1

ℓ

´

∂̄ ln b̄

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where ∂ = ∂w, ∂̄ = ∂w̄. The other four integrability conditions give no additional informa-

tion, because the lines of the corresponding matrices are proportional to the lines of Ñwt

and Ñw̄t.
10

As the upper right 3 × 3 determinant of Ñwt must vanish, we obtain ∂b = 0 or

∂z

(

e−2(Φ+ξ)b̄∂b̄
)

∂
(

e−2(Φ+ξ)b∂b
)

− ∂z

(

e−2(Φ+ξ)b∂b
)

∂
(

e−2(Φ+ξ)b̄∂b̄
)

= 0 . (4.34)

Let us assume that the expression in (4.34) does not vanish. One has then ∂b = 0 as well

as ∂b̄ = 0.11 But then also (4.34) holds, which leads to a contradiction. Thus (4.34) must

be satisfied in any case.

Note that the vanishing of the first column of Ñµν implies that also the first column

of T−1NµνT is zero, and thus T−1NµνT ∈ a(3,C), hence the generalized holonomy in the

case of one preserved complex supercharge is contained in the affine group A(3,C). This

supports the classification scheme of [4]. Of course, depending on the particular solution,

the generalized holonomy may also be a subgroup of A(3,C).

10In order to show this, one has to make use of eqs. (4.22) and (4.26).
11This follows from the vanishing of the 3×3 determinant that is obtained from Ñwt by deleting the first

column and the third line.
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4.4 Time-dependence of second Killing spinor

In this section we will utilize the above Killing spinor equations to derive the time-

dependence of the second Killing spinor. In addition, we will show that the Killing spinor

equations can be completely solved when the second Killing spinor is time-independent.

Let us first simplify the Killing spinor equations (4.31). In the following we set b = reiϕ

and define ψ = Φ+ξ, ψ1 = r2α1, ψ2 = re−ψα2, ψ12 = re−ψα12 and ψ± = ψ2±ψ12. First of

all, use the integrability conditions (4.33), that can be rewritten as ÑµνT−1α = 0. Defining

P = e−2ψb∂b, the second component for µ = w, ν = t gives

ψ1P
′ + ψ−∂P = 0 , (4.35)

with ′ = ∂z. Let us assume P ′ 6= 0 (the case P ′ = 0 is considered in appendix C and will

lead to the same conclusions). If we define g(t, z, w, w̄) = −ψ−/P ′, we get

ψ− = −gP ′ , ψ1 = g∂P .

The third component of the (w, t) integrability condition is of the form

ψ1f1 + ψ2∂b + ψ−f− = 0 ,

for some functions f1, f− that depend on z,w, w̄ but not on t. Using the above form of ψ1

and ψ−, this becomes

f1g∂P + ψ2∂b − f−gP ′ = 0 . (4.36)

Now, if g = 0, the latter equation implies ψ2∂b = 0, and hence (since ∂b 6= 0 due to P ′ 6= 0)

ψ2 = 0. Furthermore, ψ1 = ψ− = 0 in this case, so there exists no other Killing spinor.

Thus, g 6= 0 and we can write g = exp G. Dividing (4.36) by g and deriving with respect

to t yields ∂t(ψ2/g) = 0 and hence

ψ2 = eGψ0
2(z,w, w̄) .

It is then plain that ∂tψi = ψi∂tG, i = 1, 2, 12. The Killing spinor equations are of the

form ∂µψi = Mµijψj , for some time-independent matrices Mµ. Taking the derivative of

this with respect to t, one gets ∂µ∂tG = 0, whence

G = G0t + G̃(z,w, w̄) ,

with G0 ∈ C constant. We have thus ∂tψi = G0ψi and hence also ∂tαi = G0αi. Further-

more, the time-dependence of α0 can be easily deduced from the Killing spinor equations:

if G0 does not vanish it is of the same exponential form as the other components of the sec-

ond Killing spinor, i.e. ∂tα0 = G0α0, while if G0 vanishes there can be a linear part in t, i.e.

∂tα0 = c for some constant c. Hence, in terms of the basis elements, the time-dependence

of the second Killing spinor takes the form12

G0 = 0 : ǫ2 = c01 + c1e1 + c2e2 + c12e1 ∧ e2 + ct(1 + be2) ,

G0 6= 0 : ǫ2 = eG0t(c01 + c1e1 + c2e2 + c12e1 ∧ e2) , (4.37)

12We will loosely refer to Killing spinors with G0 = 0 as time-independent, despite the possible linear

time-dependence, to distinguish from the G0 6= 0 exponential time-dependence.

– 25 –



J
H
E
P
0
7
(
2
0
0
7
)
0
4
6

where c0, c1, c2, c12 are time-independent functions of the spatial coordinates, and c is a

constant. This was derived assuming P ′ does not vanish, but as we show in appendix C is

in fact a completely general result. Hence, adding a second Killing spinor to ǫ1 = 1 + be2,

the Killing spinor equations imply that ǫ2 always has the above time-dependence.

Plugging this time-dependence into the subsystem of the Killing spinor equations not

containing α0 one obtains in terms of ψi

ψ′
1 −

(

G0

4r2
+

b′

b

)

ψ1 −
∂b

b
ψ− = 0 , (4.38)

ψ′
2 −

(

G0

4r2
+

b̄′

b̄
+

1

ℓb̄

)

ψ2 −
(

b′

b
+

1

ℓb

)

ψ12 = 0 , (4.39)

ψ′
12 − e−2ψ ∂̄b̄

b̄
ψ1 −

(

G0

4r2
+

b′

b
+

b̄′

b̄
+

1

ℓb̄

)

ψ12 = 0 , (4.40)

ψ′
1 −

(

− G0

4r2
+

b̄′

b̄

)

ψ1 −
∂b̄

b̄
ψ− = 0 , (4.41)

ψ′
2 + e−2ψ ∂̄b

b
ψ1 −

(

−G0

4r2
+

b′

b
+

b̄′

b̄
+

1

ℓb

)

ψ2 = 0 , (4.42)

ψ′
12 −

(

b̄′

b̄
+

1

ℓb̄

)

ψ2 −
(

−G0

4r2
+

b′

b
+

1

ℓb

)

ψ12 = 0 , (4.43)

∂ψ1 − σwG0ψ1 = 0 , (4.44)

∂ψ2 −
(

b′

b
+

1

ℓb

)

ψ1 −
(

σwG0 +
∂b

b
+

∂b̄

b̄
− 2∂ψ

)

ψ2 = 0 , (4.45)

∂ψ12 +

(

b̄′

b̄
+

1

ℓb̄

)

ψ1 −
(

σwG0 +
∂b

b
+

∂b̄

b̄
− 2∂ψ

)

ψ12 = 0 , (4.46)

∂̄ψ1 −
(

σw̄G0 +
∂̄b

b
+

∂̄b̄

b̄

)

ψ1 + e2ψ

[(

b′

b
+

b̄′

b̄

)

ψ− +
1

ℓ

(

ψ2

b
− ψ12

b̄

)]

= 0 , (4.47)

∂̄ψ2 −
(

σw̄G0 +
∂̄b̄

b̄

)

ψ2 −
∂̄b

b
ψ12 = 0 , (4.48)

∂̄ψ12 −
∂̄b̄

b̄
ψ2 −

(

σw̄G0 +
∂̄b

b

)

ψ12 = 0 . (4.49)

For G0 = 0, these equations simplify significantly, and allow for a complete solution.

As is shown in appendix D, under the additional assumption ψ− 6= 0, ψ1 6= 0, the metric

and the field strength for half-supersymmetric solutions with G0 = 0 are given in terms of

a single real function H depending only on the combination Z − w − w̄ and satisfying the

second order differential equation

2
(

1 + e−2H
)

Ḧ + Ḣ2

[

1 − 3α2

e2H + 1 − α2

]

=
γ2

ℓ2
, (4.50)

where α ∈ R denotes an arbitrary constant and γ = 0, 1. The new coordinate Z is defined

by Z = z for γ = 0 and Z = ℓ ln
(

1 + z
ℓ

)

for γ = 1. Furthermore, in the remainder of this
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section and in appendix D, a dot denotes a derivative with respect to Z −w − w̄. Given a

solution of (4.50), one defines the functions χ, ρ by

χ =
iα√

e2H + 1 − α2
,

1

ℓ2ρ2
=

(γ

ℓ
+ Ḣ

)2
− Ḣ2χ2 . (4.51)

Note that χ is imaginary and ρ is real. b and ψ are then given by

b = eγZ/ℓρ eiϕ , e2ψ = e2(H+γZ/ℓ) ,

where

tan ϕ =
iḢχ

γ
ℓ + Ḣ

,

so that the metric reads

ds2 = −4ρ2e2γZ/ℓ(dt + σ)2 +
1

ρ2

(

dZ2

4
+ e2Hdwdw̄

)

, (4.52)

where the shift vector satisfies

∂Zσw =
1

4
e−γZ/ℓ

(

χ

ρ2

)·
, ∂σw̄ − ∂̄σw = −1

2
e−γZ/ℓ

(

e2H χ

ρ2

)·
.

Finally, the gauge field strength is given by (4.21).

Equation (4.50) is actually the Euler-Lagrange equation for the following standard

action for the scalar H

S =

∫

d (Z − w − w̄)

[

1

2
M(H)Ḣ2 − V (H)

]

, (4.53)

where

M(H) =

(

e2H + 1
)2

(e2H + 1 − α2)
3/2

, V (H) = − γ2

2ℓ2

e2H + 1 − 2α2

(e2H + 1 − α2)
1/2

. (4.54)

Thus it is possible to use the energy conservation law of that model in order to evaluate

the “velocity” Ḣ in terms of H. Since dH = Ḣd (Z − w − w̄) one has

d

dH

(

1

2
M(H)Ḣ2 + V (H)

)

= 0 , (4.55)

so that there must exist a constant E such that

Ḣ =

√

2

M(H)
[E − V (H)] =

√
2

(

e2H + 1 − α2
)3/4

e2H + 1

[

E +
γ2

2ℓ2

e2H + 1 − 2α2

√
e2H + 1 − α2

]1/2

. (4.56)

The key-point is to consider now, as a new coordinate, the function H in place of w + w̄13

and to write down the full solution, say metric plus gauge field, in terms of H. Using

w = x + iy, the general solution is given by

ds2 = −4ρ2e2γZ/ℓ
[

dt + e−γZ/ℓσ̂ydy
]2

+
e2H

4ρ2
dy2 +

1

4ρ2

[

dZ2 + e2H

(

dZ − dH

Ḣ

)2
]

,

A = ℓḢ
[

−2iρ2χeγZ/ℓdt +
(

1 − e2Hχ2
)

dy
]

− i
ℓ

4
d log

b

b̄
, (4.57)

13This is possible by simply requiring that Ḣ 6= 0.
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where Ḣ is given in equation (4.56), the functions χ and ρ are defined in (4.51) and the

shift vector reads

σ̂y = − i

2
e2H χ

ρ2
.

If γ = 1, a simple example of this set of solutions can be obtained by setting α = 0, so

Ḣ = 1/ℓ , b =
1

2

(

1 +
z

ℓ

)

. (4.58)

As will be shown in section 5.1.2, this corresponds to the maximally supersymmetric AdS4

solution. More general γ = 1 solutions will be two-parameter deformations thereof, the

parameters being α and the energy E of the associated scalar system.

Setting γ = 0 the potential V (H) vanishes and the parameter E can be fixed by a simple

rescaling of the coordinates. Thus we are left with a one-parameter family of solutions.

Since the metric does no more depend explicitly on Z, it is useful to replace the coordinate

Z instead of x by H. Defining a new coordinate r such that r4 ≡ 16
(

e2H + 1 − α2
)

and a

new parameter Q = 4
ℓ α, the complete solution reads

ds2 = −
(

r2

ℓ2
+

Q2

r2

)[

dt − 2ℓ3Q

r4 + ℓ2Q2
dy

]2

+

+

(

r2

ℓ2
+

Q2

r2

)−1
[

h(r)2
(

dr +
2

h(r)
dx

)2

+
1

4

(

r4 + ℓ2Q2 − 16
) (

dx2 + dy2
)

]

,

A = −Q

r
dt +

2ℓ

r
dy − i

ℓ

4
d log

b

b̄
, (4.59)

where

h(r) =
r4 + ℓ2Q2

r4 + ℓ2Q2 − 16
. (4.60)

The parameter Q can thus be interpreted as an electric charge. The Petrov type of the

solution is D or simpler. If one sets Q = 4/ℓ the Petrov type is reduced to N , so that there

is a gravitational wave.

In order to complete the classification of G0 = 0 solutions, we need to study separately

the cases where either ψ1 or ψ− vanishes (it can easily be seen from (4.39) and (4.40)

that there is no solution if both vanish). As one can see by looking at equations (4.38)

and (4.41), the condition ψ1 = 0 leads to b = b(z), which is studied in detail in section 5.1.

The other possibility, ψ− = 0, is more involved, but as we show in appendix D it boils

down to three different cases, that can be completely solved: the AdS2 × H
2 anti-Nariai

spacetime studied in section 5.1.1, the imaginary b case solved in section 5.3, and finally

the half BPS solution coming from the gravitational Chern-Simons model, that we analyse

in section 5.5.

We would like to remark that the assumption G0 = 0 on the overall time-dependence

of the second Killing spinor seems a reasonable choice since all known 1/2-supersymmetric

solutions to be studied in the next section are contained in this class, or can be brought

to this class by a general coordinate transformation. Hence we expect the G0 = 0 class to

form an important subclass of all 1/2-supersymmetric solutions.
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5. Timelike half-supersymmetric examples

The problem of finding all half BPS configurations in the timelike class involves the solution

of the integrability conditions we obtained above. To obtain explicit examples of half BPS

solutions, we shall restrict to some simple subclasses with particular b. This will determine

the fraction of preserved supersymmetry for the solutions which are already known to be

1/4 supersymmetric, and will also lead to new solutions.

5.1 Static Killing spinors and b = b(z)

The timelike vector field V , constructed as a bilinear of the Killing spinor, is static if the

associated one-form V = dt + σ satisfies the Fröbenius condition V ∧ dV = 0. Obviously,

there can be static BPS solutions with V not being static itself, due to the choice of

coordinates; we shall loosely refer the Killing spinors whose vector bilinear is static as static

Killing spinors. The staticity condition, in turn, implies dσ = 0 and puts strong constraints

on the function b. Indeed, equation (4.18) implies that the phase ϕ of b depends only on

z. Then, (4.19) gives the modulus r of b in terms of its phase,

r =
sin ϕ(z)

lϕ′(z)
. (5.1)

As a consequence, r and therefore the complete complex function b, depend on the single

variable z. The full solution is therefore determined by the single real function ϕ, which

has to satisfy the equations for supersymmetry (together with the conformal factor ψ).

However, since the equations can be exactly solved for arbitrary b(z), we will stick to

this more general case and eventually comment on the static subcase.

If b depends only on z, the equations of motion simplify to

Im

(

b2∂2
z

1

b
− 3b

l
∂z

1

b
+

1

bl2

)

= 0 , (5.2)

e−2ξ∆ξ =
2

l
e2Φ

[

∂z

(

1

b
+

1

b̄

)

− 1

l

(

1

b
+

1

b̄

)2

+
3

lbb̄

]

. (5.3)

Here we have used the fact that Φ, defined in (4.15), depends only on the coordinate z.

In principle there is also an integration constant K(w, w̄) with arbitrary dependence on

the transverse coordinates, but since Φ appears only in the combination Φ + ξ in all the

equations, we can always absorb the (w, w̄) dependence into the conformal factor ξ. Now

the left hand side of equation (5.3) depends only on the coordinates w and w̄, while the

right hand side depends only on z. This equation can be therefore satisfied only if both

sides are equal to some constant κ. The system of equations is then

∆ξ +
κ

2
e2ξ = 0 , (5.4)

e2Φ(z)

[

∂z

(

1

b
+

1

b̄

)

− 1

l

(

1

b
+

1

b̄

)2

+
3

lbb̄

]

= − l

4
κ . (5.5)

Note that the first one is the Liouville equation, whose solution describes the transverse

two-dimensional manifold, which has therefore constant curvature κ.
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Equations (5.2) and (5.5) can easily be solved [16]. Their solution is given by14

b̄ = −αz2 + βz + γ

ℓ(2αz + β)
, (5.6)

with α, β, γ ∈ C. Then ξ solves the Liouville equation for a constant curvature two-manifold

with scalar curvature15

κ = 8(αγ̄ + ᾱγ) − 4ββ̄ . (5.7)

This solution generically belongs to the supersymmetric Reissner-Nordström-Taub-NUT-

AdS4 family of spacetimes. The values α = 0 and β2 = 4αγ are special cases and will

be treated separately in the following. Note that the coefficients α, β and γ are not three

independent parameters, as they can be rescaled without changing the function b: the

solutions depend only on their ratios. For example, if α 6= 0, one can use β/α and γ/α as

independent complex parameters of the family of solutions.

The solutions with static Killing spinor form a subset of this family. For (5.6) the

staticity condition (5.1) yields the condition αβ̄ − ᾱβ = 0. Recalling the expression for the

NUT charge of these solutions,

n =
i

4

(

β̄

ᾱ
− β

α

)

, (5.8)

this charge must vanish for non-vanishing α, as one could have guessed. On the other hand,

for α = 0 the solution is anti-Nariai, as we shall see below. We conclude that the most

general supersymmetric configuration with static Killing vector constructed as a Killing

spinor bilinear is either of the form (5.6) — i. e. in the fourth row of table 1 of [34] — with

vanishing NUT charge, or it is anti-Nariai spacetime.

The supersymmetric static solutions discussed so far are generically 1/4-BPS. We want

to see what further condition ensures the presence of an additional Killing spinor. Inserting

the staticity ansatz b = b(z) into the integrability equations and requiring these matrices

to be of rank smaller or equal to two, one finds the following condition (in particular this

is obtained from the vanishing of the minor of the last row of Ñwt and the first two rows

of Ñw̄t)
(

b′ +
1

l

)(

2b′ +
1

l

)

[

∂z

(

1

b
+

1

b̄

)

− 1

l

(

1

b
+

1

b̄

)2

+
3

lbb̄

]

= 0 , (5.9)

As an aside, note that we have only used the ansatz b = b(z) so far and not the staticity

condition (5.1), i.e. the precise relation between r and ϕ. The static solutions are therefore

in general still a subset of the solutions under consideration.

Condition (5.9) calls for the following three different cases, corresponding to the van-

ishing of its three factors.

14With this definition, the constants α, β and γ coincide with a, b and c of [16] respectively.
15This scalar curvature differs from the one given in [16] for the case in which all coefficients are real,

k = 4αγ − β2 = κ/4. The factor of 4 comes from the different definition of the conformal factor of the

transverse metric, our ξ is related to the old γ by ξ = γ − ln 2.
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5.1.1 AdS2 × H
2 space-time (α = 0)

Requiring the first factor of (5.9) to vanish leads to b = − z
ℓ + ic with constant c, cor-

responding to α = 0 in (5.6). We can absorb the imaginary part of c by a shift of the

coordinate z and henceforth will assume c ∈ R.

In this case κ = −4 and we have a hyperbolic transverse space. As a solution of (5.4)

we can take

e2ξ =
1

2x2
. (5.10)

Moreover, eΦ = l|b| and σ = 0, therefore giving the metric

ds2 = −4

(

z2

ℓ2
+ c2

)

dt2 +
dz2

4
(

z2

ℓ2
+ c2

) +
ℓ2

2x2

(

dx2 + dy2
)

. (5.11)

This is the anti-Nariai AdS2 × H
2 solution, with the AdS2 factor written in Poincaré

coordinates for c = 0 and in global coordinates for c 6= 0. The coordinate transformations

between Poincaré coordinates (tP , zP ) (with c = 0) to global ones (tgl, zgl) (with c 6= 0) is

given by

zP =
1

2c

(

zgl −
√

z2
gl + ℓ2c2 cos(4ctgl/ℓ)

)

,

tP = − ℓ

2

√

z2
gl + ℓ2c2 sin(4ctgl/ℓ)

zgl −
√

z2
gl + ℓ2c2 cos(4ctgl/ℓ)

. (5.12)

The electromagnetic field strength (4.21) in this case is given by

F = − 1

ℓx2
dx ∧ dy , (5.13)

i.e. only lives on the hyperbolic part and is independent of the coordinates of the AdS part

of space-time.

This solution preserves precisely 1/2 of the supersymmetries, as was already shown

in [35]. To obtain the form of the Killing spinors admitted by this metric we first observe

that the integrability conditions impose α2 = α12 = 0. Then the Killing spinor equations

are easily solved, but one should treat separately the cases c = 0 and c 6= 0:

• If c = 0, then

α0 = λ1 + λ2

(

2t

ℓ
− 1

2b

)

, α1 =
λ2

b
, (5.14)

where λ1,2 ∈ C are integration constants. This yields the following Killing spinors,

spanning a two-dimensional complex space,

ǫ =

[

λ1 + λ2

(

2t

ℓ
− 1

2b

)]

1 + b

[

λ1 + λ2

(

2t

ℓ
+

1

2b

)]

e2 . (5.15)

Note that λ1 = 1, λ2 = 0 corresponds to the original Killing spinor. Also note that

the constant G0, corresponding to the time-dependence of the second Killing spinor

– 31 –



J
H
E
P
0
7
(
2
0
0
7
)
0
4
6

with λ2 6= 0, is zero. The form of the scalar invariant corresponding to the general

spinor ǫ is

b̃ = b

[

|λ1|2 + |λ2|2
(

4t2

ℓ2
− 1

4b2

)

+
2t

ℓ

(

λ̄1λ2 + λ1λ̄2

)

]

+
1

2

(

λ̄1λ2 − λ1λ̄2

)

. (5.16)

Here the first term is real, while the second is imaginary. Note that the latter is in

fact constant. Then the Killing vector Ṽ built from ǫ will have a norm Ṽ 2 = −4|b̃|2,
and will be timelike unless b̃ vanishes. This is however not possible, because both

the real and imaginary parts of b̃ should vanish, but since λ1,2 do not depend on

the coordinates, the real part cannot vanish. Therefore, every Killing spinor of this

solution belongs to the timelike class.

• If c 6= 0 we have

α0 =
1

2
√

c

[

λ1−iλ2+(λ1+iλ2)
b

|b|

]

e−4ict/ℓ , α1 = − i
√

c

|b| (λ1+iλ2)e
−4ict/ℓ , (5.17)

and the most general Killing spinor is parametrized by λ̃1,2 ∈ C as follows

ǫ =
1

2
√

c
(λ1 − iλ2)(1 + be2) +

b

2|b| (λ1 + iλ2)e
−4ict/ℓ(1 + b∗e2) . (5.18)

Note that the combination λ1 − iλ2 corresponds to the first Killing spinor 1 + be2,

while the orthogonal combination λ1 + iλ2 gives rise to the second Killing spinor

proportional to 1 + b∗e2. Any combination with λ2 6= 0 has G0 = −4ic/ℓ.

In this case, the real part of the invariant b̃ is given by

Re(b̃) =
|λ1|2
2ℓc

(

−z +
√

z2 + ℓ2c2 cos(4ct/ℓ)
)

+
|λ2|2
2ℓc

(−z −
√

z2 + ℓ2c2 cos(4ct/ℓ))+

+
1

2ℓc
(λ1λ

∗
2 + λ2λ

∗
1)

√

z2 + ℓ2c2 sin(4ct/ℓ)) , (5.19)

while the imaginary part is identical to that of (5.16).

It can easily be checked that the coordinate transformation (5.12) indeed relates the com-

plex scalar b̃, which is composed of spinor bilinears, in (5.16) and (5.19) to each other.

Let’s now check how the isometries of AdS2 act on the Killing spinors. It is useful to

do this by embedding AdS2 with metric

ds2 = −4

(

z2

ℓ2
+ c2

)

dt2 +
dz2

4
(

z2

ℓ2 + c2
) (5.20)

into the three-dimensional flat space Xa = (U, T,X) with metric

ds2 = −dU2 − dT 2 + dX2 . (5.21)

Then, AdS2 is obtained as the hyperboloid defined by

−U2 − T 2 + X2 =
ℓ2

4
, (5.22)
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and its isometry group SO(2,1) will act as the three-dimensional Lorentz group on the

embedding coordinates Xa (here a is a three-dimensional Lorentz index).

If c = 0, the AdS2 metric (5.20) is in the Poincaré form, and can be seen to be the

induced metric on the hyperboloid by parameterizing it with the coordinates (t, z) given

by

z = U + X , t =
ℓT

2(U + X)
. (5.23)

Then, if one defines the 3d Lorentz vector

Λa =

(

1

ℓ

(

|λ1|2 − |λ2|2
)

,
1

ℓ
(λ∗

1λ2 + λ1λ
∗
2) ,−1

ℓ

(

|λ1|2 + |λ2|2
)

)

, (5.24)

one explicitly checks that the invariant b̃ can be put in the form

b̃ = XaΛ
a +

iℓ

2

√

ΛaΛa. (5.25)

Now, the real and imaginary part of b̃ are independently manifestly invariant under the

AdS2 isometries, as they should be (since they transform respectively as pseudoscalar and

scalar under diffeomorphism16).

If c 6= 0 we have AdS2 in global coordinates, and the embedding is modified to

U = − ℓ

2c

√

z2

ℓ2
+ c2 cos

4ct

ℓ
, T = − ℓ

2c

√

z2

ℓ2
+ c2 sin

4ct

ℓ
, X =

z

2c
. (5.26)

The invariant (5.19) takes again the manifestly invariant form (5.25), as expected, and the

isometries of AdS2 are realized linearly on the Killing spinors through their action on Λa.

This result may be useful to study in detail quotients of AdS2 and to see whether this

operation breaks some supersymmetry.

5.1.2 AdS4 space-time (β2 = 4αγ)

The following subcase corresponds to the vanishing of the second factor of the integrability

condition (5.9). The function b is then given by b = − z
2l + ic, which can be obtained

as the special case β2 = 4αγ from (5.6). This corresponds to AdS4, the only maximally

supersymmetric solution of the theory. Indeed the integrability condition matrices vanish

in this case.

Let’s see in detail the form of the metric arising from different values of c. As in the

previous case we can take the constant c to be real. If c = 0, the metric is static, σ = 0,

ξ = 0 and e2Φ = |b|4, and we obtain anti-de Sitter in Poincaré coordinates,

ds2 = −z2

ℓ2

(

dt2 − dx2 − dy2
)

+
ℓ2

z2
dz2 . (5.27)

On the other hand, for c 6= 0, the metric appears in non-static coordinates,

σ = − ℓdy

4cx2
, e2ξ =

ℓ2

4c2x2
, e2Φ = |b|4 , (5.28)

16Note that Λ doesn’t depend on the sum of the phases of λ1,2; this is diffeomorphism invariant but

transforms under U(1) gauge transformations.
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which give

ds2 = −
(

z2

l2
+ 4c2

)

[

(

dt − ℓdy

4cx2

)2

− ℓ2

16c2x2

(

dx2 + dy2
)

]

+

(

z2

l2
+ 4c2

)−1

dz2 . (5.29)

The field strength (4.21) vanishes in this case.

We shall now obtain the form of the Killing spinors for AdS4, and will do this in the

simpler c = 0 case. The solution of the Killing spinor equations yields

α0 = λ1 −
(

t

ℓ
+

ℓ

z

)

λ2 +
w̄

ℓ
λ3 , α2 = −wz

2ℓ2
λ2 +

1

2

(

1 +
zt

ℓ2

)

λ3 −
z

2ℓ
λ4 ,

α1 =
2ℓ

z
λ2 , α12 =

wz

2ℓ2
λ2 +

1

2

(

1 − zt

ℓ2

)

λ3 +
z

2ℓ
λ4 , (5.30)

where the coefficients λ1,...,4 span a four dimensional complex space, as expected in the case

of maximal supersymmetry. In the form basis of the spinors ǫ = c01+c1e1+c2e2+c12e1∧e2,

we obtain

c0 = λ1 −
(

t

ℓ
+

ℓ

z

)

λ2 +
w̄

ℓ
λ3 , c2 = − z

2ℓ
λ1 +

z

2ℓ

(

t

ℓ
− ℓ

z

)

λ2 −
zw̄

2ℓ2
λ3 ,

c1 =
w

ℓ
λ2 −

(

t

ℓ
+

ℓ

z

)

λ3 + λ4 , c12 =
wz

2ℓ2
λ2 −

z

2ℓ

(

t

ℓ
− ℓ

z

)

λ3 +
z

2ℓ
λ4 . (5.31)

The new Killing spinors corresponding to λ2 and λ4 both have17 G0 = 0. To study the

action of the AdS4 isometries it is useful to embed the hyperboloid in a five-dimensional

flat space (U, V, T,X, Y ) with metric

ds2 = −dU2 + dV 2 − dT 2 + dX2 + dY 2. (5.32)

Then, AdS4 is the hypersurface −U2 + V 2 − T 2 + X2 + Y 2 = −ℓ2/4 and its isometries are

realized as the SO(3,2) isometries of the embedding space. The relation with the Poincaré

coordinates is

t

ℓ
=

T

U − V
,

x

ℓ
=

X

U − V
,

y

ℓ
=

Y

U − V
, z = 2(U − V ) . (5.33)

If we define the vectors

ℓΛa =

































|λ1|2 − |λ2|2 + |λ3|2 − |λ4|2

|λ1|2 + |λ2|2 − |λ3|2 − |λ4|2

λ3λ̄4 + λ̄3λ4 − λ̄1λ2 − λ1λ̄2

λ2λ̄4 + λ̄2λ4 − λ̄1λ3 − λ1λ̄3

i
(

λ2λ̄4 − λ̄2λ4 + λ̄1λ3 − λ1λ̄3

)

































, Xa =















U

V

T

X

Y















, (5.34)

17Note that this does not hold for λ3, whose time-dependence is not of the form derived in section 4.4.

There is no contradiction however, since all solutions in this class have P = 0 and hence are treated

separately in appendix C. It is interesting to find that nevertheless the time-dependence of many Killing

spinors in this class have the canonical G0 time-dependence.
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where the index a = 1, . . . , 5 is an SO(3,2) index raised and lowered using the metric (5.32),

then

ΛaΛ
a = − 1

ℓ2

[

λ3λ̄4 − λ̄3λ4 + λ̄1λ2 − λ1λ̄2

]2 ≥ 0 , (5.35)

and the invariant b̃ for the Killing spinors reads

b̃ = c∗0c2 + c1c
∗
12 = XaΛ

a +
iℓ

2

√

ΛaΛa . (5.36)

This form of b̃ is manifestly invariant under the AdS4 isometries, and shows that under

Λa transforms in the fundamental representation of SO(3,2) under these transformations.

Note that it has precisely the same form (5.25) as in the anti-Nariai case. Again, the

explicit knowledge of the AdS4 isometry group action on the Killing spinors is important

to study the supersymmetry of its quotients.

5.1.3 The Reissner-Nordström-Taub-NUT-AdS4 family

The last subcase corresponds to the vanishing of the third factor of the integrability con-

dition (5.9). Note that this is precisely the expression in square brackets of equation (5.5)

and the condition reads simply κ = 0. Then ξ is an harmonic function and the transverse

space is flat. In particular, the solution (5.6) admits a second Killing spinor if

|β|2 = 2(αγ̄ + ᾱγ) . (5.37)

Since α 6= 0 we can define ζ = Im(β/α) and δ = Im(γ/α). Moreover, all equations are

invariant under rigid translations in the z directions, since the coordinate z never appears

explicitly in them. One can use this freedom to eliminate the real part of β/α by performing

the redefinition z 7→ z − 1
2Re(β/α). Hence this complete family of 1/2 BPS solutions is

determined by two real parameters ζ and δ,

b = −1

ℓ

z2 − iζz + 1
4ζ2 − iδ

2z − iζ
. (5.38)

Then σ = −2ζ(r/ℓ)2dϑ and the resulting metric is

ds2 = −

(

z2 + ζ2

4

)2
+ (ζz + δ)2

ℓ2
(

z2 + ζ2

4

)

(

dt − 2ζ

ℓ2
r2dϑ

)2

+
ℓ2

(

z2 + ζ2

4

)

dz2

(

z2 + ζ2

4

)2
+ (ζz + δ)2

+
4

ℓ2

(

z2 +
ζ2

4

)

(

dr2 + r2 dϑ2
)

, (5.39)

where we used polar coordinates (r, ϑ) in the (w, w̄) plane. The charges of the solution are

M = −δζ

ℓ2
, n =

ζ

2
, P = −ζ2

2ℓ
, Q = −δ

ℓ
. (5.40)
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Essentially, the imaginary part of γ gives the electric charge and the imaginary part of β

determines the NUT charge. Note that the quantization condition P = −(kℓ2 + 4n2)/2ℓ is

also satisfied. In terms of the charges, the solution is given by

b = −1

ℓ

(z − in)2 + 2n2 + iℓQ

2 (z − in)
. (5.41)

The subfamily of static half BPS configurations is obtained by imposing the staticity

condition ζ = 0 or equivalently vanishing NUT charge. It is parameterized by the single

parameter left, δ ∈ R and the solutions are restricted to have the following charges

M = 0 , n = 0 , P = 0 , Q = −δ

ℓ
.

In terms of the charges, the solution is given by

b = −1

ℓ

z2 + iℓQ

2z
. (5.42)

The metric and electromagnetic field strength for this solution read

ds2 = −
(

Q2

z2
+

z2

ℓ2

)

dt2 +
dz2

Q2

z2 + z2

ℓ2

+ 4ℓ2z2 dwdw̄ , (5.43)

and

F = −Q

z2
dt ∧ dz . (5.44)

This is simply the backreacted AdS4 filled with the electric field generated by an electric

charge Q placed in its center ζ = 0. The solution has a singularity there. Note that this

solution was already shown to be 1/2 supersymmetric in [36]. It was also shown there that

the Killing spinors are preserved if one compactifies the transverse two-dimensional plane

to a two-torus.

We will now discuss the Killing spinors for these metrics. The integrability conditions

impose α2 = 0 and
(

b′ +
1

ℓ
− b

ℓb̄

)

α3 =

(

b′ +
1

ℓ

)

α4 . (5.45)

With these constraints, the Killing spinor equations simplify, and can be solved to give

α0 = λ1 + 2iζw̄λ2 , α1 = 0 , (5.46)

α2 =
z2 + iζz + ζ2

4 + iδ
√

4z2 + ζ2
, α12 = α2 −

λ2

2

√

4z2 + ζ2 , (5.47)

where λ1,2 ∈ C parameterize the two dimensional space of Killing spinors. Then the most

general Killing spinor for these metrics is

ǫ = (λ1 + 2iζw̄λ2) 1 − ℓλ2

√

2z + iζ

2z − iζ
e1

+ b (λ1 + 2iζw̄λ2) e2 −
z2 − iζz + ζ2

4 − iδ
√

4z2 + ζ2
λ2 e1 ∧ e2 . (5.48)
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Again the second Killing spinor has G0 = 0 time-dependence. Finally, the corresponding

orbit of the Killing spinor is determined by the invariant

b̃ = b|λ1|2 +

(

ℓ
z2 + iζz + ζ2

4 + iδ

2z − iζ
+ 4ζ2bww̄

)

|λ2|2 + 2iζb
(

w̄λ̄1λ2 − wλ1λ̄2

)

. (5.49)

It is easy to show now that b̃ is non vanishing for any choice of λ1,2: indeed if b̃ = 0, we

have ∂∂̄b̃ = 4ζ2b|λ2|2 = 0 and either λ2 = 0, which implies in turn λ1 = 0, or ζ = 0. In the

latter case, it is very easy to see that b̃ = 0 iff ǫ = 0. Therefore, all Killing spinors of this

family of metrics belong to the timelike class, and the solution is purely timelike.

Summary of the b = b(z) case:

(i) The only supersymmetric solutions with static Killing spinor (i.e. whose timelike

Killing vector constructed as a Killing spinor bilinear is static) are AdS4, the anti-

Nariai spacetime and the Reissner-Nordström-AdS4 solutions of the fourth row of

table 1 of [34], i. e. solutions of the form (5.6) with vanishing NUT charge.

(ii) The only 1/2 BPS solutions with static Killing spinor are the anti-Nariai spacetime

and the solution (5.43) with field strength (5.44).

(iii) The most general half BPS solution with b = b(z) are the anti-Nariai spacetime and

the solution (5.39) with charges (5.40) describing an electric charge in the center of

AdS4.

The natural way to continue this approach is to study half BPS solutions with b

harmonic, and this will be the subject of the next paragraph.

5.2 Harmonic b solutions

The previous class of solutions can be generalized by requiring ∆b = 0 instead of b =

b(z) [16]. This implies that ∆1/b = 0 and hence (4.23) still simplifies in exactly the same

way as in the b = b(z) case. Indeed, the solution is

b̄ = −αz2 + βz + γ

ℓ(2αz + β)
, (5.50)

where now α, β and γ are no more constants but arbitrary functions of (w, w̄). It is then

easy to show that the ∆b = 0 condition requires these functions to be harmonic and all

(anti-)holomorphic, that is α, β and γ all depending either only on w or only on w̄, and

this is the most general solution with ∆b = 0. The b = b(z) configurations are particular

cases of this larger class, and are obtained for α, β and γ constant. Note that also the

∂b = 0 and ∂b̄ = 0 subclasses fall into this family.

Let’s take for definiteness α, β, γ all anti-holomorphic, then b = b(z,w). The require-

ment that the integrability conditions allow for an extra Killing spinor, i.e. that they are of
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rank ≤ 2, in this case leads to several conditions. One of these is obtained from the minor

of the last three lines of Ñwt and reads
(

2∂z b̄ +
1

l

)(

∂z b̄ +
1

l

)(

∂2b +
1

b
∂b∂b − 2∂(Φ + ξ)∂b

)

∂b = 0. (5.51)

This gives three different cases to be analysed, corresponding to the vanishing of the first

three factors of this equation (vanishing of the fourth factor implies b = b(z) and hence

brings one back to the previous section).

5.2.1 Deformations of AdS2 × H
2

The vanishing of the first factor in (5.51) implies b = − z
ℓ +ic(w), where c(w) is an arbitrary

holomorphic function. These are the α(w) = 0 supersymmetric Kundt solutions of Petrov

type II, describing gravitational and electro-magnetic waves propagating on anti-Nariai

space-time [16].

The remaining integrability conditions however imply α1 = α2 = α12 = 0, in which

case there is no second Killing spinor, or ∂c = 0. Therefore there are no new half BPS

solutions with non constant c. In this class c constant is the half supersymmetric anti-Nariai

spacetime and the other preserve only 1/4 of the supersymmetries.

5.2.2 Deformations of AdS4

The vanishing of the second factor in (5.51) implies b = − z
2ℓ + ic(w). In this case we are

considering the β2 = 4αγ supersymmetric Kundt solutions, describing gravitational and

electro-magnetic waves propagating on AdS4 spacetime [16].

Again the remaining integrability equations have to solutions: α1 = α2 = α12 = 0 or

∂c = 0. Hence, as in the previous case, we find that there are no harmonic deformations

of AdS4 preserving half supersymmetry.

5.2.3 Deformations of Reissner-Nordström-Taub-NUT-AdS4

Not considering the previous two special cases, the general solution represents expand-

ing gravitational and electro-magnetic waves propagating on a Reissner-Nordström-Taub-

NUT-AdS4 spacetime [16]. When Im(β) = 0, the solution can be put in Robinson-

Trautman form and is of Petrov type II.

The vanishing of the third factor in (5.51) is given by

∂2b +
1

b
∂b∂b − 2∂(Φ + ξ)∂b = 0 . (5.52)

With b given in (5.50) this case can be solved for the derivative of Φ + ξ and implies

∂̄(Φ + ξ) =
1

2∂b

(

∂2b +
1

b
∂b∂b

)

, (5.53)

and therefore ∆(Φ + ξ) = 0. Then (5.3) fixes the transverse manifold to be flat and

κ(w) = 8(αγ̄ + ᾱγ) − 4ββ̄ = 0. (5.54)

But α,β and γ being holomorphic, this last equation can be satisfied if and only if they

are constant, and we are back to the previous case, i. e. there are no new 1/2 BPS solutions.
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Summary of the harmonic case: there are no new half BPS solutions in the harmonic

b case. The only half BPS solutions are those with b = b(z), and as soon as one deforms

these solutions by adding some harmonic (w, w̄)-dependence, one breaks supersymmetry

further to 1/4.

5.3 Imaginary b solutions

Another subcase we want to study is b̄ = −b, i. e. b purely imaginary. For notational

convenience we introduce18

b = iX ,

where X is real. From (4.15) one gets Φ = 0. All quantities in the Bianchi identity (4.22),

apart from b and hence X, are then z-independent. The only consistent possibility is to

take ∂zX = 0. The remaining equations (4.22) and (4.23) read

∆ξ =
6

ℓ2X2
e2ξ , ∆

1

X
− 4

ℓ2X3
e2ξ = 0 . (5.55)

Examples of 1/4 supersymmetric solutions of this class, i.e. with imaginary b, that were

discussed in [16] are X = (x/ℓ)α with α = −2 and α = 1
3 . These correspond to a particular

Petrov type I solution and an electrovac AdS travelling wave of Petrov type N, respectively.

It was shown that the latter actually preserves a second, null Killing spinor. In this section

we will derive the general condition for 1/2 supersymmetry in the case of imaginary b and

will find that there is a one-parameter family of such solutions.

The condition for 1/2 supersymmetry is very simple in this case. Assuming that ∂X

is not equal to zero, which would clearly be incompatible with (5.55), there is only one

differential constraint which needs to be satisfied for the existence of a second Killing spinor,

i. e. for the matrices of integrability conditions to have rank 2, namely

∂2X−1 − 2∂ξ∂X−1 = 0 . (5.56)

The above three differential equations can be integrated to

e2ξ = −iK̄(w̄)∂X−1 , ∂X−1 =
i

ℓ2
K(w)

(

1

4X4
+ L

)

, (5.57)

where K(w) is an arbitrary holomorphic function and L is a real constant. The func-

tion K(w) corresponds to the freedom to choose holomorphic coordinates on the two-

dimensional space, and hence it can be gauged away. A convenient gauge choice will be

K(w) = iℓ. Note that, for this choice, the imaginary part of the right hand side of the last

equation vanishes, and therefore that ∂yX = 0.

For L = 0, (5.57) can be integrated to give

X3 =
3x

2ℓ
, (5.58)

18In the following we will assume that X is positive without loss of generality.
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which is (up to a rescaling of the coordinate x) the example given above with α = 1
3 . This

was already found to be 1/2 supersymmetric in [16]. Here we find that this solution is a

special case of the most general possibility.

For other values of the constant L it is convenient to use X as a new coordinate instead

of solving for X(x). From (4.18) and (4.19) it follows that σ can be chosen to be

σ =
dy

4X4
. (5.59)

Then the metric reads

ds2 = −4X2

(

dt +
dy

4X4

)2

+
1

4X2
dz2 +

ℓ2dX2

X2(1 + 4LX4)
+

1 + 4LX4

4X6
dy2 . (5.60)

Finally, from (4.21) we obtain the gauge field strength

F = 2dt ∧ dX . (5.61)

Note that the geometry (5.60) is generically of Petrov type D, and becomes of Petrov type

N for L = 0.

Now let us turn our attention to the form of the second Killing spinor. First of all, the

integrability conditions imply that it takes the form

αT = (β1, β2, iX
3eξβ2, iX

3eξβ2) ,

where β1 and β2 are arbitrary space-time dependent functions. The Killing spinor equa-

tions (4.31) yield

β1 = λ1 −
1

2
λ2b

−2 , β2 = λ2b
−2 ,

where λ1 and λ2 are integration constants. This implies that the new Killing spinor takes

the form ǫ = λ1ǫ1 + λ2ǫ2, where

ǫ1 = 1 + iXe2 , ǫ2 =
1

2
X−2(1 − iXe2) +

√

1

4
X−4 + L (e1 − iXe1 ∧ e2) . (5.62)

Note that G0 = 0 as well in this class.

One interesting aspect of the second Killing spinor ǫ2 is the norm of its associated

Killing vector Vµ = D(ǫ2,Γµǫ2). We find VµV µ = −4X2L2, hence the second Killing

spinor is indeed null for the case L = 0, as was noticed before, while it is timelike for

L 6= 0. In the latter case, to understand whether the solution belongs also to the null class

of supersymmetric solutions, we have therefore to study the most general linear combination

of the two Killing spinors. The Killing vector Ṽ constructed from ǫ = λ1ǫ1 +λ2ǫ2 has norm

Ṽ 2 =
1

X2

(

λ̄1λ2 − λ1λ̄2

)2 − 4X2
(

L|λ1|2 + |λ2|2
)2

,

which can vanish only if L ≤ 0. We have therefore three cases:

(i) L > 0, pure timelike class, Petrov type D.
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(ii) L = 0, belongs to both null and timelike classes, Petrov type N. This is the homoge-

neous half BPS pp-wave in AdS. (In the terminology of [16] it has a wave profile Gα

with α = 0).

(iii) L < 0, belongs to both null and timelike classes, Petrov type D.

Actually the solutions (5.60) with L > 0 can be cast into a simpler form. This is done

by trading the coordinate y for a new variable ψ = Ly − t. For convenience, let us also

introduce the Schwarzschild coordinate r and rescale z,

r = − ℓ√
LX

, ζ =
1

2

√
Lz . (5.63)

In the new coordinates, the metric and the gauge field strength read

ds2 = −
(

r2

ℓ2
+

q2
e

r2

)

dt2 +
dr2

r2

ℓ2
+ q2

e

r2

+
r2

ℓ2

(

dψ2 + dζ2
)

, F =
qe

r2
dt ∧ dr , (5.64)

where we have defined qe = 2ℓ/
√

L. This is precisely the half BPS solution obtained

in [36], the massless limit of an electrically charged toroidal black hole, which forms a

naked singularity. It is also interesting to note that the charge qe diverges in the L → 0

limit. This limit is naively singular in these coordinates, but it can be taken if we perform

a Penrose limit [37, 38]. The existence of this limit explains why we obtained a one-

parameter family of geometries (5.60) connecting the massless limit of toroidal black holes

and a pp-wave. Indeed, define the new coordinates (X+,X−, R, Z) and the rescaled charge

Qe by

ψ + t = 2ǫ2X+ , ψ − t = 2X− , r =
1

ǫR
, ζ = ǫZ , qe =

Qe

ǫ
. (5.65)

Then, the singular limit ǫ → 0 yields is a regular solution of the theory and corresponds to

the half supersymmetric solution (5.60) with L = 0,

ds2 =
ℓ2

R2

(

4 dX+dX− − Q2
eR

4

ℓ6
dX−2 + dR2 + dZ2

)

, F =
Qe

ℓ2
dX− ∧ dR . (5.66)

In the procedure, we have blown up the metric in the neighborhood of a geodesic with ψ+t

constant near the boundary r → ∞ of AdS.

We now turn to the L < 0 case, which is both timelike and lightlike. Let us define

L = −µ2. We can perform a coordinate transformation inspired from the previous one,

ψ = Ly − t , r = − ℓ

µX
, ζ =

µ

2
z , (5.67)

under which the metric and the field strength become

ds2 =

(

r2

ℓ2
− q2

e

r2

)

dt2 +
dr2

r2

ℓ2
− q2

e

r2

+
r2

ℓ2

(

−dψ2 + dζ2
)

, F =
qe

r2
dt ∧ dr , (5.68)
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where we have defined qe = 2ℓ/µ. We see that this is the precisely the metric for L > 0

after the double analytic continuation

t 7→ it , ψ 7→ iψ , qe 7→ −iqe . (5.69)

This solution represents therefore a bubble of nothing in AdS [39 – 42]. Note that the metric

is singular for r =
√

ℓqe. One should compactify t, in such a way to eliminate the conical

singularity on the (t, r) hypersurface. Then, if we compactify also ζ, this S1 will have a

minimal radius for r =
√

ℓqe (the boundary of the bubble of nothing) and then grow with

r. Note that for r → ∞ one locally recovers AdS spacetime, and that the L = 0 solutions

can again be understood as a Penrose limit of this metric.

5.4 Action of the PSL(2,R) group on the imaginary b solutions

We can now generate new supersymmetric solutions by acting with the PSL(2,R) symmetry

group (4.28)–(4.29) on the known ones. It is easy to check that the AdS4 and AdS2 ×
H

2 solutions are invariant under this group (although it acts non trivially on the Killing

spinors). Its action on the b = b(z) subfamily of the RNTN-AdS4 solutions was studied

in [16], where it was shown that it acts non trivially on the charges, by mixing them. Here

we want to apply it to the imaginary b solutions of the previous paragraph.

The new solution solution of the supersymmetry equations (4.22)–(4.23) generated by

the transformation (4.28)–(4.29) is

b̃ = − γ2Xz2

2γ2ℓXz + i
, e2(Φ̃+ξ) =

γ4z4

4X4

(

1 + 4LX4
)

, (5.70)

where, without loss of generality, we eliminated α by means of a translation of z,19 and

dropped the prime of the new coordinate z′. The shift function is then determined by

solving equations (4.18) and (4.19),

σx = 0 , σy =
1 + 4LX4

4γ2X4z2
+

γ2ℓ2

X2
. (5.71)

Then, defining the new coordinates (T, σ, p, q) through

T =
t

2ℓ2γ2
, σ =

y

2
, p = − ℓ

X
, q = 2ℓ2γ2z , (5.72)

the metric reads

ds2 = − Q(q)

q2+p2

[

dT +

(

P (p)

q2
+

p2

ℓ2

)

dσ

]2

+
q2+p2

Q(q)
dq2+

q2+p2

P (p)
dp2+

1

ℓ4
(q2+p2)P (p) dσ2,

(5.73)

with

Q(q) =
q4

ℓ2
, P (p) =

1

ℓ2

(

p4 + 4Lℓ2
)

, (5.74)

19After this translation the limit γ → 0 is not anymore well-defined. To perform it, one has to substitute

preliminarily z with z − α/γ everywhere.
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and the gauge field (4.21) is

F = d

(

pq2

ℓ(q2 + p2)

)

∧ dT + d

(

4ℓLp

q2 + p2

)

∧ dσ . (5.75)

The form of the metric suggests some connection with the Plebanski-Demianski family of

solutions, and indeed these geometries are of Petrov type D for L 6= 0, and of Petrov type N

for L = 0, but we were not able to find the precise relation. Note also that the parameter γ

has been reabsorbed in the new variables, and we are left with a one-parameter (L) family

of solutions.

The left hand side of the necessary condition (4.34) for the existence of a second Killing

spinor reads, for this solution,

− 9iX4
(

1 + 4LX4
)

ℓ2 (1 + 4γ4ℓ2X2z2)4
γ2 (5.76)

which clearly vanishes only for γ = 0, i.e. if the PSL(2,R) transformation is trivial. There-

fore, the new solutions (5.73)–(5.75) preserves only 1/4 of the supersymmetries, and we

explicitly see that the PSL(2,R) transformations can break any additional supersymmetry.

Also note that if we perform the PSL(2,R) transformation adapting the original metric to a

different Killing spinor, we could in principle end up with other supersymmetric solutions.

Surprisingly, we find that the L = 0 solution can be cast in the Lobatchevski wave

form, even though it only has a time-like Killing spinor. This can be seen by trading the

coordinates (q, p) for (x, z) defined by

x =
ℓ3

2

(

1

q2
− 1

p2

)

, z =
ℓ3

qp
, (5.77)

in the metric (5.73) with L = 0, which becomes

ds2 =
ℓ2

z2

(

−2 dTdσ +
z2

2ℓ
√

x2 + z2

x −
√

x2 + z2

x +
√

x2 + z2
dT 2 + dz2 + dx2

)

. (5.78)

The field strength can be easily obtained from equation (5.75) but the result is not par-

ticularly enlightening and therefore we do not report it. This metric represents a 1/4 BPS

Lobatchevski wave, whose Killing spinor falls in the timelike class. This does not contradict

the results obtained in the null case, since the null Lobatchevski had a field strength (3.6)

of the form F = φ′(T )dT ∧ dz, while this solution has a much more complicated gauge

field. It is however interesting to note that the solutions of the null case do not exhaust all

possible supersymmetric Lobatchevski waves.

5.5 Gravitational Chern-Simons system and G0 = ψ− = 0 solutions

A number of the previously studied subcases can be combined into the interesting Ansatz

b = −1

ℓ

αz2 + βz + γ

2αz + β − iη(w, w̄)
, (5.79)
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where α, β and γ are three real constants. For α = β = 0 this reduces to b imaginary,

while η = 0 leads to the real subcase of b = b(z). With this assumption, the equations for

a timelike Killing spinor reduce to

∆ξ +
1

2
e2ξ (k − 3η) = 0 , ∆η + e2ξ

(

kη − η3
)

= 0, (5.80)

where we have defined k = 4αγ − β2 and ∆ = 4∂∂̄. Interestingly, as shown in [16], this

system of equations follows from the dimensionally reduced Chern-Simons action [43, 44],

S =

∫

d2x

√

(2)g
(

(2)Rη + η3
)

, (5.81)

if we use the conformal gauge (2)gijdxidxj = e2ξ
(

dx2 + dy2
)

and η is the curl of a vector

potential,
√

(2)g ǫijη = ∂iAj − ∂jAi. To obtain equations (5.80) we vary the action with

respect to Ai and ξ. When varying the dimensionally reduced Chern-Simons action with

respect to gij there is however an additional equation to (5.80).

Using the results of Grumiller and Kummer [49], one obtains the most general solution

to the dimensionally reduced Chern-Simons system [16]

e2ξ =
L

ℓ4
− k

2
η2 +

1

4
η4, (5.82)

where L is an integration constant and dη = e2ξdx. Trading the coordinate x for η, we get

the following configuration of the fields

ds2 = − 4

ℓ2

P 2
2

P ′2
2 + η2

[dt + σ]2 +
ℓ2

4

P ′2
2 + η2

P 2
2

[

dz2 + P 2
2

(

e−2ξdη2 + e2ξdy2
)]

,

A =
2

ℓ

P2η

P ′2
2 + η2

[dt + σ] +
ℓ

4
Vdy − i

ℓ

4
d log

b

b̄
, (5.83)

where P2(z) = αz2 + βz + γ, k is defined as above and the shift function reads

σ =
ℓ2

2

(

αη2 +
e2ξ

P2

)

dy . (5.84)

These solutions preserve 1/4 of the original supersymmetry. In fact, the k = 0 solutions

coincide with the imaginary b ones and their PSL(2,R) transforms of sections 5.3 and 5.4.

For k non-vanishing these are different solutions.

As can be seen from the Poisson bracket (4.34), the only possibility to have 1/2 su-

persymmetry is α = 0 and hence k ≤ 0. In fact, starting from any solution with k ≤ 0,

one can always obtain α = 0 by an appropriate PSL(2,R) transformation. The non-trivial

part of the PSL(2,R) symmetry is z 7→ −1/(z + δ), whose action on the parameters α, β

and γ of the Ansatz (5.79) is given by

α 7→ αδ2 − βδ + γ , β 7→ 2αδ − β , γ 7→ α , (5.85)

which keeps k fixed. Indeed, for k ≤ 0, there is always a PSL(2,R) transformation that

sets α = 0, while this is impossible for k > 0.
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The requirement α = 0 leads to the half-supersymmetric imaginary b solution of sec-

tion 5.3 for k = 0. In the case of k negative, when α = 0 one can scale β to 1 in (5.79)

without loss of generality, and γ can be put to zero by a translation in z. Hence the function

b is given by

b = −1

ℓ

z

1 − iη
. (5.86)

The metric is given in (D.32) and is generically of Petrov type D. The second Killing spinor

can be found in (D.33). As shown in appendix D, the G0 = ψ− = 0 solutions are either

the imaginary b ones, anti-Nariai spacetime or the above 1/2 supersymmetric solution with

k = −1.

We would like to mention that (5.82) is the most general solution to the dimensionally

reduced Chern-Simons system, but not to the equations (5.80). The reason for this is the

additional constraint one obtains when varying (5.81) with respect to gij . An example

of this is provided by the Petrov type I solution with b = i(x/ℓ)2 in section 5.3 and its

PSL(2,R) transform given in eq. (2.44) of [16].

6. Final remarks

In this paper, we applied spinorial geometry techniques to classify all supersymmetric

solutions of minimal N = 2 gauged supergravity in four dimensions.

In the presence of null Killing spinors, the problem can be completely solved, and all

1/4- and 1/2-supersymmetric solutions have been written down explicitly. We showed that

there are no 1/4-BPS backgrounds with U(1)⋉R
2-invariant Killing spinors and those with

R
2-invariant Killing spinors have been derived in sections 3.1 and 3.2. The backgrounds in

the latter section were previously unknown and are Petrov type II configurations describing

gravitational waves propagating on a bubble of nothing in AdS4. In addition, it turned out

that there are no 1/2-BPS backgrounds with R
2-invariant Killing spinors and hence any

additional Killing spinor is timelike. In section 3.3 we gave the backgrounds with one null

and one timelike Killing spinor.

For a timelike Killing spinor we derived the conditions for the corresponding back-

grounds in section 4.1 and 4.2. We worked out the first integrability conditions necessary

for the existence of a second Killing spinor in section 4.3. We explicitly solved these

equations in a number of subcases in section 5, and thereby found several new solutions,

like the bubbles of nothing in AdS4, already obtained in the null formalism, and their

PSL(2,R)-transformed configurations. Furthermore, our results showed that the general-

ized holonomy in the case of one preserved complex supercharge is contained in A(3,C),

supporting thus the classification scheme of [4].

In addition, the time-dependence of a second time-like Killing spinor was shown to be

an overall exponential factor with coefficient G0 in section 4.4. In the case G0 = 0 these

equations have been solved in full generality, up to a second order ordinary differential

equation. We expect this class to comprise a large number of interesting 1/2-BPS solutions.

Indeed, all the examples of section 5 either have vanishing G0 or can be transformed to

that case by a coordinate transformation.
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There are several interesting points that remain to be understood. First of all, it

would be desirable to get a deeper insight into the underlying geometric structure in the

case of U(1) invariant spinors. In five dimensions, spacetime is a fibration over a four-

dimensional Hyperkähler or Kähler base for ungauged and gauged supergravity respec-

tively [8, 12], whereas in four-dimensional ungauged supergravity one has a fibration over a

three-dimensional flat space [5]. This suggests that the base for D = 4 gauged supergravity

might be an odd-dimensional analogue of a Kähler manifold, i. e. , a Sasaki manifold. From

the equations (4.22) and (4.23) this is not obvious.

Secondly, in [16], a surprising relationship between the equations (4.22), (4.23) gov-

erning 1/4 BPS solutions and the gravitational Chern-Simons theory [43] was found. Why

such a relationship should exist is not clear at all, and deserves further investigations.

The third point concerns preons, which were conjectured in [45] to be elementary

constituents of other BPS states. In type II and eleven-dimensional supergravity, it was

shown that imposing 31 supersymmetries implies that the solution is locally maximally

supersymmetric [27, 46, 30]. Similar results in four- and five-dimensional gauged super-

gravity were obtained in [29, 28]. This implies that preonic backgrounds are necessarily

quotients of maximally supersymmetric solutions. While M-theory preons cannot arise by

quotients [47], it remains to be seen if 3/4 supersymmetric solutions to N = 2, D = 4

or D = 5 gauged supergravities really do not exist. The only maximally supersymmetric

backgrounds in these theories are AdS4 [13] and AdS5 [12] respectively, so the putative

preonic configurations must be quotients of AdS.20

Finally, it would be interesting to apply spinorial geometry techniques to classify all

supersymmetric solutions of four-dimensional N = 2 matter-coupled gauged supergravity.

Work in this direction is in progress [50].
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A. Spinors and forms

In this appendix, we summarize the essential information needed to realize the spinors of

Spin(3,1) in terms of forms. For more details, we refer to [51]. Let V = R
3,1 be a real vector

space equipped with the Lorentzian inner product 〈·, ·〉. Introduce an orthonormal basis

e1, e2, e3, e0, where e0 is along the time direction, and consider the subspace U spanned by

20Some weeks after this paper has been posted on the archive, [48] appeared, where such preonic quotients

were indeed constructed.
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the first two basis vectors e1, e2. The space of Dirac spinors is ∆c = Λ∗(U ⊗C), with basis

1, e1, e2, e12 = e1 ∧ e2. The gamma matrices are represented on ∆c as

Γ0η = −e2 ∧ η + e2⌋η , Γ1η = e1 ∧ η + e1⌋η ,

Γ2η = e2 ∧ η + e2⌋η , Γ3η = ie1 ∧ η − ie1⌋η , (A.1)

where

η =
1

k!
ηj1...jk

ej1 ∧ . . . ∧ ejk

is a k-form and

ei ∧ η =
1

(k − 1)!
ηij1...jk−1

ej1 ∧ . . . ∧ ejk−1
.

One easily checks that this representation of the gamma matrices satisfies the Clifford

algebra relations {Γa,Γb} = 2ηab. The parity matrix is defined by Γ5 = iΓ0Γ1Γ2Γ3, and

one finds that the even forms 1, e12 have positive chirality, Γ5η = η, while the odd forms

e1, e2 have negative chirality, Γ5η = −η, so that ∆c decomposes into two complex chiral

Weyl representations ∆+
c = Λeven(U ⊗ C) and ∆−

c = Λodd(U ⊗ C). Note that Spin(3,1)

is isomorphic to SL(2,C), which acts with the fundamental representation on the positive

chirality Weyl spinors.

Let us define the auxiliary inner product

〈
2

∑

i=1

αiei,

2
∑

j=1

βjej〉 =

2
∑

i=1

α∗
i βi (A.2)

on U ⊗ C, and then extend it to ∆c. The Spin(3,1) invariant Dirac inner product is then

given by

D(η, θ) = 〈Γ0η, θ〉 . (A.3)

In many applications it is convenient to use a basis in which the gamma matrices act like

creation and annihilation operators, given by

Γ+η ≡ 1√
2

(Γ2 + Γ0) η =
√

2 e2⌋η , Γ−η ≡ 1√
2

(Γ2 − Γ0) η =
√

2 e2 ∧ η ,

Γ•η ≡ 1√
2

(Γ1 − iΓ3) η =
√

2 e1 ∧ η , Γ•̄η ≡ 1√
2

(Γ1 + iΓ3) η =
√

2 e1⌋η . (A.4)

The Clifford algebra relations in this basis are {ΓA,ΓB} = 2ηAB , where A,B, . . . =

+,−, •, •̄ and the nonvanishing components of the tangent space metric read η+− = η−+ =

η••̄ = η•̄• = 1. The spinor 1 is a Clifford vacuum, Γ+1 = Γ•̄1 = 0, and the representation

∆c can be constructed by acting on 1 with the creation operators Γ+ = Γ−,Γ•̄ = Γ•, so

that any spinor can be written as

η =
2

∑

k=0

1

k!
φā1...āk

Γā1...āk1 , ā = +, •̄ .

The action of the Gamma matrices and the Lorentz generators ΓAB is summarized in the

table 6.
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1 e1 e2 e1 ∧ e2

Γ+ 0 0
√

2 −
√

2e1

Γ−
√

2e2 −
√

2e1 ∧ e2 0 0

Γ•
√

2e1 0
√

2e1 ∧ e2 0

Γ•̄ 0
√

2 0
√

2e2

Γ+− 1 e1 −e2 −e1 ∧ e2

Γ•̄• 1 −e1 e2 −e1 ∧ e2

Γ+• 0 0 −2e1 0

Γ+•̄ 0 0 0 2

Γ−• −2e1 ∧ e2 0 0 0

Γ−•̄ 0 2e2 0 0

Table 6: The action of the Gamma matrices and the Lorentz generators ΓAB on the different basis

elements.

Note that ΓA = UA
aΓa, with

(UA
a) =

1√
2











1 0 1 0

−1 0 1 0

0 1 0 −i

0 1 0 i











∈ U(4) ,

so that the new tetrad is given by EA = (U∗)AaE
a.

B. Spinor bilinears

Given a Killing spinor

ǫ = c01 + c1e1 + c2e2 + c12e1 ∧ e2 , (B.1)

one can construct the bilinears

f̃ = −iD(ǫ, ǫ) = −i (c0c
∗
2 − c1c

∗
3 − c2c

∗
0 + c12c

∗
1) , (B.2)

g̃ = −iD(ǫ,Γ5ǫ) = c0c
∗
2 + c1c

∗
3 + c2c

∗
0 + c12c

∗
1 , (B.3)

Ṽ = D(ǫ,Γµǫ) dxµ =
1

2

[

1

|b|2
(

|c2|2 + |c12|2
)

− |c0|2 − |c1|2
]

dz

−2
[

|c2|2 + |c12|2 + |b|2
(

|c0|2 + |c1|2
)]

(dt + σ)

+
1

|b|e
ψ [(c2c

∗
1 − c0c

∗
12) dw + (c1c

∗
2 − c12c

∗
0) dw̄] , (B.4)

B̃ = D(ǫ,Γ5Γµǫ) dxµ =
1

2

[

1

|b|2
(

|c2|2 − |c12|2
)

+ |c0|2 − |c1|2
]

dz

−2
[

|c2|2 − |c12|2 − |b|2
(

|c0|2 − |c1|2
)]

(dt + σ)

+
1

|b|e
ψ [(c2c

∗
1 + c0c

∗
12) dw + (c1c

∗
2 + c12c

∗
0) dw̄] , (B.5)
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Φ̃ =
1

2
D(ǫ,Γµνǫ) dxµ ∧ dxν = − (c0c

∗
2 − c1c

∗
12 + c2c

∗
0 − c12c

∗
1) dt ∧ dz

−2eψ

|b|
(

c2c
∗
12 + |b|2c0c

∗
1

)

dt ∧ dw − 2eψ

|b|
(

c12c
∗
0 + 4|b|2c1c

∗
0

)

dt ∧ dw̄

+

[

(c0c
∗
2 − c1c

∗
12 + c2c

∗
0 − c12c

∗
1) σw +

eψ

2|b|3 c2c
∗
12 −

eψ

2|b|c0c
∗
1

]

dz ∧ dw

+

[

(c0c
∗
2 − c1c

∗
12 + c2c

∗
0 − c12c

∗
1) σw̄ +

eψ

2|b|3 c12c
∗
0 −

eψ

2|b|c1c
∗
0

]

dz ∧ dw̄

+
2eψ

|b|
[

c2c
∗
12σw̄ − c12c

∗
0σw + |b|2 (c0c

∗
1σw̄ − c1c

∗
0σw)

+
eψ

4|b| (c0c
∗
2 + c1c

∗
12 − c2c

∗
0 − c12c

∗
1)

]

dw ∧ dw̄ . (B.6)

Given the first Killing spinor of the form ǫ1 = 1 + be2 and the second Killing spinor

ǫ2 = c01 + c1e1 + c2e2 + c12e1 ∧ e2, one can also construct mixed bilinears of the type

D(ǫ1,Γ···ǫ2), which verify the same differential equations as the bilinears built from the

original two Killing spinors:

f̂ = −i(b̄c0 − c2) , ĝ = b̄c0 + c2 , (B.7)

V̂ =
1

2b
(c2 + bc0) (dt + σ) +

1

2b
(c2 − bc0) dz +

1

|b|e
ψ

(

b̄c1 − c12

)

dw̄ , (B.8)

B̂ =
1

2b
(c2 − bc0) (dt + σ) +

1

2b
(c2 + bc0) dz +

1

|b|e
ψ

(

b̄c1 + c12

)

dw̄ . (B.9)

C. The case P ′ = 0

In section 4.3, we simplified the equations for the second Killing spinor under the assump-

tion P ′ 6= 0, where P = e−2ψb∂b. Here we consider the case P ′ = 0. To this end, we need

the following subset of the Killing spinor equations (4.31):

∂+ψ2 −
√

2r2

(

b̄′

b̄
+

1

ℓb̄

)

ψ2 −
√

2r2

(

b′

b
+

1

ℓb

)

ψ12 = 0 , (C.1)

∂+ψ12 − re−ψ∂•̄ ln b̄ ψ1 −
√

2r2

(

2
r′

r
+

1

ℓb̄

)

ψ12 = 0 , (C.2)

∂−ψ2 +
1

r
e−ψ∂•̄ ln b ψ1 −

√
2

(

2
r′

r
+

1

ℓb

)

ψ2 = 0 , (C.3)

∂−ψ12 −
√

2

(

b̄′

b̄
+

1

ℓb̄

)

ψ2 −
√

2

(

b′

b
+

1

ℓb

)

ψ12 = 0 , (C.4)

re−ψ∂•

(

1

r2
e2ψψ2

)

−
√

2

(

b′

b
+

1

ℓb

)

ψ1 = 0 , (C.5)

re−ψ∂•

(

1

r2
e2ψψ12

)

+
√

2

(

b̄′

b̄
+

1

ℓb̄

)

ψ1 = 0 . (C.6)
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If P ′ = 0, (4.35) implies ψ− = 0 or ∂P = 0. Let us first assume the former, i. e. , ψ2 = ψ12.

From (C.6)–(C.5) one obtains then ψ1 = 0 or

b′

b
+

b̄′

b̄
+

1

ℓb
+

1

ℓb̄
= 0 . (C.7)

• If ψ1 = 0, (C.4)–(C.3) yields ψ2 = 0, and thus there exists no further Killing spinor.

• If (C.7) holds, one can use (C.1) and (C.4) to show that ∂+ψ2 = ∂−ψ2 = 0, or

equivalently ∂tψ2 = ψ′
2 = 0. Using this in (C.2) and (C.3) and deriving with respect

to t, one gets ∂̄b̄ ∂tψ1 = ∂̄b ∂tψ1 = 0. When ∂tψ1 6= 0, this means that ∂̄b = ∂b = 0,

so b = b(z), which is a case analyzed in section 5.1. If instead ∂tψ1 = 0, all the ψi

are independent of t, and the Killing spinor equations reduce to the system (4.38)

to (4.49) with G0 = 0.

In the case ∂P = 0, consider the integrability condition

ψ1Q
′ + ψ−∂Q = 0 , (C.8)

where Q = e−2ψ b̄∂b̄, following from the first line of Ñwt. As long as Q′ 6= 0, with the same

reasoning as in section 4.3, one obtains the system (4.38) to (4.49). If Q′ = 0, (C.8) implies

ψ− = 0 or ∂Q = 0. The case ψ− = 0 was already considered above, so the only remaining

case is P ′ = ∂P = Q′ = ∂Q = 0. For P = Q = 0 we get again b = b(z), so without loss

of generality we can assume P 6= 0 or Q 6= 0. Suppose that Q = 0, P 6= 0, so b = b(w, z).

Take the logarithm of e−2ψb∂b = P (w̄), derive with respect to z, use (4.15), and apply ∂̄.

This leads to ∂b = 0, which is a contradiction to the assumption P 6= 0. In the same way

one shows that P = 0, Q 6= 0 is not possible, so that both P and Q must be nonvanishing.

Now use the third row of Ñw̄t, which leads to Q̄ψ2 = 0 and hence ψ2 = 0. Finally, the last

row of Ñw̄t yields ψ− = 0, i. e. , the case already considered above.

Hence, the conclusion is that in the case P ′ = 0, the second Killing spinor either has

G0 time-dependence of the form (4.37), or leads to solutions with b = b(z). The latter

are treated separately in section 5.1. As can be found there, all 1/2-BPS solutions with

b = b(z) also have second Killing spinors with G0 time-dependence of the form (4.37).

Hence this time-dependence is a completely general result21 for second Killing spinors in

the time-like case.

D. Half-supersymmetric solutions with G0 = 0

From the difference of equations (4.39)−(4.43) and (4.48)−(4.49) one gets ψ− = ψ−(w).

Furthermore, [(4.42)−(4.40)+e−2ψ (4.47)] and (4.44) yield ψ1 = ψ1(z). Assuming ψ− 6= 0,

eqs. (4.38) and (4.41) can be written in the form

(

β

b

)′
+ ∂

(

1

b

)

= 0 ,

(

β

b̄

)′
+ ∂

(

1

b̄

)

= 0 , (D.1)

21The only counterexample is the third Killing spinor of AdS4, see (5.30), but since this is maximally

supersymmetric it does not contradict the result.
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where β = ψ1/ψ−. Deriving (D.1) with respect to w̄ gives

[

∂̄

(

1

b

)

β

]′
+ ∂∂̄

(

1

b

)

= 0 ,

[

∂̄

(

1

b̄

)

β

]′
+ ∂∂̄

(

1

b̄

)

= 0 .

Now use (D.1) in the difference between the first equation and the complex conjugate of

the second one to get
[

1

b

(

β̄β′ − β̄′β
)

]′
= 0 .

Observe that β̄β′ − β̄′β = |ψ−|−2
(

ψ̄1ψ
′
1 − ψ̄′

1ψ1

)

(z), so that for ψ̄1ψ
′
1 − ψ̄′

1ψ1 6= 0 there

must exist a real function B(z) and a generic function h(w, w̄) such that

b = B(z)h(w, w̄) .

Plugging this into (D.1), we conclude that

∂ ln

(

h

h̄

)

= 0 ,

so that the phase of the function h is fixed, h = hR(w, w̄)eiϕ0 , with hR real. Using (4.18),

the constancy of the phase of b implies that the shift vector σ does not depend on z. (4.19)

gives then

∂z

(

e2ψ

B3

)

= 0 ,

or, using (4.15),
2

3

cos ϕ0

ℓhR
+ B′ = 0 ,

and thus

B′ = c ,
2

3

cos ϕ0

ℓhR
= −c ,

where c denotes a real constant. Now we have to distinguish to cases:

(i) c 6= 0: In this case b(z) =
(

B0 − 2 cos ϕ0

3ℓ z
)

eiϕ0 . Plugging this into the first of

eqs. (D.1) one gets
(

ψ1

b

)′
= 0 ,

which is solved by ψ1 = ηb where η is a constant. But this yields ψ̄1ψ
′
1 − ψ̄′

1ψ1 = 0,

which contradicts our assumption.

(ii) c = 0: In this case b(w, w̄) = ihR(w, w̄). The combination (4.40)+(4.42)−(4.39)−
(4.43) leads to ψ− = 0, which again contradicts one of our assumptions.

We thus conclude that ψ̄1ψ
′
1−ψ̄′

1ψ1 = 0, and hence ψ1 = ζ(z)eiθ0 where θ0 is a constant and

ζ(z) is a real function. Sending ψi → e−iθ0ψi we can take ψ1 real and non-negative without

loss of generality. Let us now consider the case where both ψ1 and ψ− are non-vanishing.

This allows to introduce new coordinates Z,W, W̄ such that

dZ =
1

ψ1(z)
dz , dW =

dw

ψ−(w)
, dW̄ =

dw̄

ψ̄−(w̄)
.
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Note that one can set ψ− = 1 using the residual gauge invariance w 7→ W (w), ψ 7→ ψ̃ =

ψ− 1
2 ln(dW/dw)− 1

2 ln(dW̄/dw̄) leaving invariant the metric e2ψdwdw̄. We can thus take

W = w in the following. Equations (4.38) and (4.41) are then equivalent to

(∂Z + ∂)ϕ = 0 , ∂Z ln ψ1 − (∂Z + ∂) ln r = 0 .

From the real part of the first equation we have

ϕ = ϕ(Z − w − w̄) .

Using ψ1 = ψ1(Z), the second equation implies

(∂Z + ∂)
r

ψ1
= 0 ,

and hence
r

ψ1
= ρ(Z − w − w̄) .

The function b must thus have the form

b(Z,w + w̄) = ψ1(Z)B(Z − w − w̄) ,

where B(Z −w− w̄) = ρ(Z −w− w̄)eiϕ(Z−w−w̄). The difference between (4.45) and (4.46)

yields

(∂Z + ∂) (ln ψ1 − ψ) = 0 ,

so that ln ψ1 − ψ = −H(Z − w − w̄) with H real. This gives

e2ψ = ψ1(Z)2e2H

for the conformal factor. In terms of the new coordinate Z, (4.15) reads

∂Zψ +
1

2ℓ

(

1

B
+

1

B̄

)

= 0 .

Using the definition of H we get

Ḣ + ∂Z ln ψ1 +
1

2ℓ

(

1

B
+

1

B̄

)

= 0 , (D.2)

where a dot denotes a derivative with respect to Z − w − w̄. We can thus conclude that

∂Z lnψ1 = γ/ℓ for some constant γ, i. e. ,ψ1(Z) = ψ
(0)
1 eγZ/ℓ. By shifting Z one can set

ψ
(0)
1 = 1. Calling χ = ψ+/ψ−, the only remaining nontrivial Killing spinor equations read

∂Zχ − 2

(

ρ̇

ρ
− Ḣ

)

χ + 2iϕ̇ +
1

ℓ

(

1

B
− 1

B̄

)

= 0 ,

∂Zχ −
(

2
ρ̇

ρ
− Ḣ +

γ

ℓ

)

χ − 2ie−2H ϕ̇ − 1

2ℓ

(

1

B
− 1

B̄

)

= 0 ,

∂χ + 2

(

ρ̇

ρ
− Ḣ

)

χ − 2iϕ̇ − 1

ℓ

(

1

B
− 1

B̄

)

= 0 ,

∂̄χ + 2
ρ̇

ρ
χ − 2iϕ̇ = 0 ,

1

2ℓ

(

1

B
− 1

B̄

)

χ + 2
(

1 + e−2H
) ρ̇

ρ
− Ḣ +

γ

ℓ
= 0 .
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Summing the first and the third equation yields χ = χ(Z−w− w̄), so that we are left with

χ̇ − 2

(

ρ̇

ρ
− Ḣ

)

χ + 2iϕ̇ +
1

ℓ

(

1

B
− 1

B̄

)

= 0 , (D.3)

χ̇ −
(

2
ρ̇

ρ
− Ḣ +

γ

ℓ

)

χ − 2ie−2H ϕ̇ − 1

2ℓ

(

1

B
− 1

B̄

)

= 0 , (D.4)

− χ̇ + 2
ρ̇

ρ
χ − 2iϕ̇ = 0 , (D.5)

1

2ℓ

(

1

B
− 1

B̄

)

χ + 2
(

1 + e−2H
) ρ̇

ρ
− Ḣ +

γ

ℓ
= 0 . (D.6)

Adding (D.4) and (D.6) one gets

Ḣχ +
1

2ℓ

(

1

B
− 1

B̄

)

= 0 , (D.7)

which means that χ is purely imaginary. From (D.2) and (D.7) we obtain then the function

B,
1

ℓB
+

γ

ℓ
+ Ḣ(1 + χ) = 0 . (D.8)

Using this, the remaining Killing spinor equations reduce further to

[

(

1 + e2H
) χ

ρ2

]·
− γ

ℓ

(

e2H χ

ρ2

)

= 0 , (D.9)

(

χ

ρ2

)·
+ 2i

ϕ̇

ρ2
= 0 , (D.10)

Ḣ
(

1 + χ2
)

− 2
ρ̇

ρ

(

1 + e−2H
)

=
γ

ℓ
. (D.11)

Note that (D.9) automatically implies the integrability condition for the sys-

tem (4.18), (4.19), which reduces to

∂Zσw =
1

4ψ1

(

χ

ρ2

)·
, ∂σw̄ − ∂̄σw = − 1

2ψ1

(

e2H χ

ρ2

)·
. (D.12)

Thus, also equation (4.23) is satisfied, whereas (4.22) reads

(

1 + e−2H
)

2Ḧ + Ḣ2
(

1 + 3χ2
)

=
γ2

ℓ2
. (D.13)

From (D.8) we obtain the phase ϕ and the modulus ρ of B,

tan ϕ = i
Ḣχ

γ
ℓ + Ḣ

,
1

ℓ2ρ2
=

(γ

ℓ
+ Ḣ

)2
− Ḣ2χ2 .

Plugging this into equation (D.10) yields

2ḦḢχ
(

1 − χ2
)

− Ḣ2χ̇
(

1 + 3χ2
)

+
γ2

ℓ2
χ̇ = 0 .
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Using (D.13), this can be rewritten as

2Ḧχ
[

Ḣχ
(

1 − χ2
)

+
(

1 + e−2H
)

χ̇
]

= 0 ,

so that either Ḧ = 0 or Ḣχ
(

1 − χ2
)

+
(

1 + e−2H
)

χ̇ = 0. It is straightforward to show

that the first case leads to AdS4, whereas the second one implies

(

e2H + 1
) χ2

1 − χ2
= −α2 , (D.14)

where α is a real integration constant. Equations (D.9) and (D.11) are then identically

satisfied. Solving (D.14) for χ and plugging into (D.13) yields finally the ordinary differen-

tial equation (4.50), which determines half-supersymmetric solutions with G0 = 0. Putting

together all our results, we obtain (4.52) for the metric. Note that in the case γ 6= 0 one

can always set γ = 1 by rescaling the coordinates.

The second Killing spinor for these backgrounds is given by

αT =

(

α0, ρ
−2e−γZ/ℓ,

χ + 1

2ρ
eH ,

χ − 1

2ρ
eH

)

,

where

α0 = −2γt

ℓ
+ α̂0(Z,w, w̄) ,

and α̂0 is a solution of the system

∂Zα̂0 =
1

ψ1ρ2

[

ρ̇

ρ
− iϕ̇ +

γ

2ℓ

]

,

∂α̂0 = −2γ

ℓ
σw +

1

ψ1ρ2

[

− ρ̇

ρ
+ iϕ̇

]

, (D.15)

∂̄α̂0 = −2γ

ℓ
σw̄ +

1

ψ1ρ2

[

− ρ̇

ρ
+ iϕ̇

]

+
γχ e2H

ℓψ1ρ2
.

It is straightforward to verify that the integrability conditions for this system are already

implied by (D.9), (D.10) and (D.12).

Consider now the case ψ− = 0. From the difference of equations (4.38) and (4.41) it

follows that b′/b is real. Then (4.38) and (4.44) imply that ψ is a real function, depending

only on z, ψ1 = ψ1(z). Moreover, since ψ12 = ψ2, the difference of equations (4.45)

and (4.46) imply that b′/b + 1/ℓb is imaginary.

The conditions b′/b real and b′/b + 1/ℓb imaginary can be satisfied simultaneously in

three different ways:

• b′/b = 0 hence b = b(w, w̄) is an imaginary function independent of z. This case is

solved completely in section 5.3.

• b′/b + 1/ℓb = 0 implies b = −z/ℓ + c and corresponds to AdS2 × H
2, analyzed in

section 5.1.1. It is also a subcase of the following, general case,
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• if we are not in one of the previous special cases, the function b must take the form

b = −1

ℓ

z

1 − iY (w, w̄)
, (D.16)

where Y (w, w̄) is some real function to be determined.

We thus have to solve just for the ansatz (D.16). Equation (4.38) implies ψ′
1/ψ1 = b′/b

than is solved by ψ1 = z, where we have reabsorbed the integrability constant in the scale

of z. Equation (4.39) (or equivalently (4.43)) tells us that ψ2 = ψ2(w, w̄), so that the

remaining independent equations read

iz2e−2ψ ∂̄Y

1 + Y 2
− ψ2 = 0 ,

∂ψ2 + ∂
[

log
(

1 + Y 2
)

+ 2ψ
]

ψ2 − iY = 0 ,

∂̄ψ2 + ∂̄ log
(

1 + Y 2
)

ψ2 = 0 .

The first equation allows us to define a function H(w, w̄) such that

eψ = zeH(w,w̄) , (D.17)

while the last one implies that there must exist a holomorphic function C(w) such that

ψ2 =
C(w)

1 + Y 2
. (D.18)

Thus we are left with

e2HC(w) = i∂̄Y , (D.19)

∂
[

e2HC(w)
]

= ie2HY
(

1 + Y 2
)

. (D.20)

This set of equations automatically implies the integrability condition for the sys-

tem (4.18), (4.19), which reduces to

∂zσ = i
ℓ2

2

∂Y

z2
, (D.21)

∂σ̄ − ∂̄σ = iℓ2e2HY
(

1 + Y 2
) 1

z
. (D.22)

Thus also (4.23), which reads

∂∂̄Y − e2HY
(

1 + Y 2
)

= 0 , (D.23)

is satisfied and it turns out that also the Bianchi identity (4.22), namely

∂∂̄2H − e2H
(

1 + 3Y 2
)

= 0 , (D.24)

holds. We conclude that a solution to the system (D.19), (D.20) describes a 1/2-BPS

configuration of the “gravitational Chern-Simons” system discussed in [16]. If C(w) = 0
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then necessarily also Y = 0 so that we are left with AdS. If C(w) 6= 0 then we can define

new variables W and W̄ such that

∂W = C(w)∂ , ∂W̄ = C̄(w̄)∂̄ , (D.25)

so that we have

e2HCC̄ = i∂W̄ Y ,

∂W

[

e2HCC̄
]

= ie2HCC̄Y
(

1 + Y 2
)

.

As what we did in the previous case, we can set C(w) = 1 using the residual gauge

invariance w 7→ W (w), ψ 7→ ψ̃ = ψ − 1
2 ln(dW/dw) − 1

2 ln(dW̄/dw̄) leaving invariant the

metric e2ψdwdw̄. We can thus take W = w without loss of generality, and get

e2H = i∂̄Y , (D.26)

2∂H = iY
(

1 + Y 2
)

.

(D.26) implies Y = Y [i(w − w̄)] and hence H = H[i(w − w̄)]. Denoting with a dot the

derivative with respect to the combination i(w − w̄) we have

e2H = Ẏ , (D.27)

2Ḣ = Y
(

1 + Y 2
)

. (D.28)

The equations for the shift form can now be integrated, giving

σ =
ℓ2

2z
Ẏ d (w + w̄) (D.29)

Plugging (D.27) into (D.28) leads to

Ÿ = Ẏ Y (1 + Y 2) , (D.30)

which, integrated once, gives

Ẏ =
L

ℓ4
− k

2
Y 2 +

1

4
Y 4 ≡ P (Y ) , (D.31)

where L is a real constant and k = −1.22 We can thus use Y as a new coordinate, instead

of i(w − w̄). Call X = w + w̄, so that the solution reads

ds2 = − 4

ℓ2

z2

1 + Y 2

[

dt +
ℓ2

2z
PC(Y )dX

]2

+
ℓ2

4

1 + Y 2

z2

[

dz2 + z2

(

PC(Y )dX2 +
dY 2

PC(Y )

)]

,

A =
2

ℓ
z

Y

1 + Y 2
dt + ℓY

[

PC(Y )

1 + Y 2
− 1

4

(

1 + Y 2
)

]

dX +
ℓ

2

dY

1 + Y 2
. (D.32)

We can thus finally compute the second Killing spinor, with the result

ǫ2 = −
[

ℓ2

2z

(

1 + Y 2
)

+ 2t

]

1 − ℓ2

z

√

PC(Y )

√

1 + iY

1 − iY
e1 +

+

[

ℓ2

z

(

1 + Y 2
)

+
ℓ

2
(1 + iY ) +

2

ℓ

zt

1 − iY

]

e2 + ℓ

√

PC(Y )

1 + Y 2
e1 ∧ e2 . (D.33)

22The link with the notation of [49], where C and k are the Casimirs of the Poisson sigma model equivalent

to the dimensionally reduced gravitational Chern-Simons model in 2D, is given by 2C = L/ℓ△.
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Class. and Quant. Grav. 21 (2004) L17 [hep-th/0310081].

[32] U. Gran, G. Papadopoulos, D. Roest and P. Sloane, Geometry of all supersymmetric type-I

backgrounds, hep-th/0703143.

[33] S.T.C. Siklos, Lobatchevski plane gravitational waves, in Galaxies, axisymmetric systems and

relativity, M.A.H. MacCallum ed., Cambridge University Press, Cambridge (1985).

[34] N. Alonso-Alberca, P. Meessen and T. Ort́ın, Supersymmetry of topological

Kerr-Newman-Taub-NUT-AdS spacetimes, Class. and Quant. Grav. 17 (2000) 2783

[hep-th/0003071].

[35] S. Cacciatori, D. Klemm and D. Zanon, w∞ algebras, conformal mechanics and black holes,

Class. and Quant. Grav. 17 (2000) 1731 [hep-th/9910065].

[36] M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B

545 (1999) 434 [hep-th/9808097].

[37] R. Penrose, Any space-time has a plane wave as a limit, in Differential geometry and

relativity, Reidel, Dordrecht (1976).
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